当前位置: 首页 > news >正文

做个人网站怎么做googleplay商店

做个人网站怎么做,googleplay商店,做么做好网站运营,网站开发技术包括【深度学习】【图像分类】【OnnxRuntime】【Python】VggNet模型部署 提示:博主取舍了很多大佬的博文并亲测有效,分享笔记邀大家共同学习讨论 文章目录 【深度学习】【图像分类】【OnnxRuntime】【Python】VggNet模型部署前言Windows平台搭建依赖环境模型转换--pytorch转onnxONN…

【深度学习】【图像分类】【OnnxRuntime】【Python】VggNet模型部署

提示:博主取舍了很多大佬的博文并亲测有效,分享笔记邀大家共同学习讨论

文章目录

  • 【深度学习】【图像分类】【OnnxRuntime】【Python】VggNet模型部署
  • 前言
  • Windows平台搭建依赖环境
  • 模型转换--pytorch转onnx
  • ONNXRuntime推理代码
  • 总结


前言

本期将讲解深度学习图像分类网络VggNet模型的部署,对于该算法的基础知识,可以参考博主【VggNet模型算法Pytorch版本详解】博文。
读者可以通过学习 【onnx部署】部署系列学习文章目录的onnxruntime系统学习–Python篇 的内容,系统的学习OnnxRuntime部署不同任务的onnx模型。


Windows平台搭建依赖环境

在【入门基础篇】中详细的介绍了onnxruntime环境的搭建以及ONNXRuntime推理核心流程代码,不再重复赘述。


模型转换–pytorch转onnx

import torch
import torchvision as tv
def resnet2onnx():# 使用torch提供的预训练权重 1000分类model = tv.models.vgg16(pretrained=True)model.eval()model.cpu()dummy_input1 = torch.randn(1, 3, 224, 224)torch.onnx.export(model, (dummy_input1), "vgg16.onnx", verbose=True, opset_version=11)
if __name__ == "__main__":resnet2onnx()


如下图,torchvision本身提供了不少经典的网络,为了减少教学复杂度,这里博主直接使用了torchvision提供的ResNet网络,并下载和加载了它提供的训练权重。这里可以替换成自己的搭建的ResNet网络以及自己训练的训练权重。


ONNXRuntime推理代码

需要配置imagenet_classes.txt【百度云下载,提取码:rkz7 】文件存储1000类分类标签,假设是用户自定的分类任务,需要根据实际情况作出修改,并将其放置到工程目录下(推荐)。

这里需要将vgg16.onnx放置到工程目录下(推荐),并且将以下推理代码拷贝到新建的py文件中,并执行查看结果。

import onnxruntime as ort
import cv2
import numpy as np# 加载标签文件获得分类标签
def read_class_names(file_path="./imagenet_classes.txt"):class_names = []try:with open(file_path, 'r') as fp:for line in fp:name = line.strip()if name:class_names.append(name)except IOError:print("could not open file...")import syssys.exit(-1)return class_names# 主函数
def main():# 预测的目标标签数labels = read_class_names()# 测试图片image_path = "./lion.jpg"image = cv2.imread(image_path)# cv2.imshow("输入图", image)# cv2.waitKey(0)# 设置会话选项sess_options = ort.SessionOptions()# 0=VERBOSE, 1=INFO, 2=WARN, 3=ERROR, 4=FATALsess_options.log_severity_level = 3# 优化器级别:基本的图优化级别sess_options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_BASIC# 线程数:4sess_options.intra_op_num_threads = 4# 设备使用优先使用GPU而是才是CPU,列表中的顺序决定了执行提供者的优先级providers = ['CUDAExecutionProvider', 'CPUExecutionProvider']# onnx训练模型文件onnxpath = "./vgg16.onnx"# 加载模型并创建会话session = ort.InferenceSession(onnxpath, sess_options=sess_options, providers=providers)input_nodes_num = len(session.get_inputs())     # 输入节点输output_nodes_num = len(session.get_outputs())   # 输出节点数input_node_names = []                           # 输入节点名称output_node_names = []                          # 输出节点名称# 获取模型输入信息for i in range(input_nodes_num):# 获得输入节点的名称并存储input_name = session.get_inputs()[i].nameinput_node_names.append(input_name)# 显示输入图像的形状input_shape = session.get_inputs()[i].shapech, input_h, input_w = input_shape[1], input_shape[2], input_shape[3]print(f"input format: {ch}x{input_h}x{input_w}")# 获取模型输出信息for i in range(output_nodes_num):# 获得输出节点的名称并存储output_name = session.get_outputs()[i].nameoutput_node_names.append(output_name)# 显示输出结果的形状output_shape = session.get_outputs()[i].shapenum, nc = output_shape[0], output_shape[1]print(f"output format: {num}x{nc}")input_shape = session.get_inputs()[0].shapeinput_h, input_w = input_shape[2], input_shape[3]print(f"input format: {input_shape[1]}x{input_h}x{input_w}")# 预处理输入数据# 默认是BGR需要转化成RGBrgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)# 对图像尺寸进行缩放blob = cv2.resize(rgb, (input_w, input_h))blob = blob.astype(np.float32)# 对图像进行标准化处理blob /= 255.0   # 归一化blob -= np.array([0.485, 0.456, 0.406])  # 减去均值blob /= np.array([0.229, 0.224, 0.225])  # 除以方差#CHW-->NCHW 维度扩展timg = cv2.dnn.blobFromImage(blob)# ---blobFromImage 可以用以下替换---# blob = blob.transpose(2, 0, 1)# blob = np.expand_dims(blob, axis=0)# -------------------------------# 模型推理try:ort_outputs = session.run(output_names=output_node_names, input_feed={input_node_names[0]: timg})except Exception as e:print(e)ort_outputs = None# 后处理推理结果prob = ort_outputs[0]max_index = np.argmax(prob)     # 获得最大值的索引print(f"label id: {max_index}")# 在测试图像上加上预测的分类标签label_text = labels[max_index]cv2.putText(image, label_text, (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0, 0, 255), 2, 8)cv2.imshow("输入图像", image)cv2.waitKey(0)if __name__ == '__main__':main()

图片预测为猎豹(cheetah),没有准确预测出狮子(lion),但是这个图片难度很大,在1000分类中预测的比较接近的。

其实图像分类网络的部署代码基本是一致的,几乎不需要修改,只需要修改传入的图片数据已经训练模型权重即可。


总结

尽可能简单、详细的讲解了Python下onnxruntime环境部署VggNet模型的过程。

http://www.zhongyajixie.com/news/14805.html

相关文章:

  • 网站评估内容 优帮云在线企业管理培训课程
  • 专业网站改版百度开户需要什么资质
  • 深圳住房建设局网站申报发布新闻稿
  • 网站建设接单沈阳seo关键词排名优化软件
  • 昆明网络公司网站郑州网络营销排名
  • 高速公路建设管理局网站搭建网站多少钱
  • 抚州市住房和城乡建设局网站营销策划的八个步骤
  • 东莞什么行业做网站的多b站推广网站2024
  • 荆州大气网站建设价格营销策划公司是干什么的
  • 中英文双语网站怎么做合肥做网站推广
  • 如何套用别人网站做页面域名交易平台
  • 托里县城乡建设局网站如何创建网站的快捷方式
  • 做盈利的设计素材网站有前途扬州百度推广公司
  • 亚马逊注册没有公司网站怎么做今日油价92汽油价格
  • 中山建站服务2024年1月新冠高峰
  • 互动营销的案例及分析百度关键词优化有效果吗
  • 新疆建设兵团养老保险网站百度广告太多
  • 博海博海网站建设google seo优化
  • 晨光文具店网站建设珠海百度关键字优化
  • 超市网站建设策划书网址大全下载
  • 学生兼职做网站乐事薯片软文推广
  • 您的网站未备案引擎seo优
  • 阿里巴巴网站域名注册搜索引擎优化论文3000字
  • 私募网站建设建网站找哪个平台好呢
  • 德芙巧克力网站开发方案常州网站建设制作
  • 东莞设计网站公司厦门百度广告开户
  • 美剧网站怎么做网络seo营销推广
  • 如何查网站处罚过百度指数与百度搜索量
  • 网络设计制作服务seo快速排名软件推荐
  • 太原市做网站公司360seo关键词优化