当前位置: 首页 > news >正文

给客户做网站建设方案网站优化排名提升

给客户做网站建设方案,网站优化排名提升,h网站模板,帮人做网站的公司文章目录 1. ML中为什么需要矩阵求导2. 向量函数与矩阵求导初印象3. YX 拉伸术3.1 f(x)为标量,X为列向量3.2 f(x)为列向量,X 为标量3.3 f(x)为列向量,X 为列向量 4. 常见矩阵求导公式4.1 Y A T X YA^TX YATX4.2 Y X T A X YX^TAX YXTAX 1…

文章目录

1. ML中为什么需要矩阵求导

  • 简洁
    用方程式表示如下:
    y 1 = w 1 X 11 + w 2 X 12 (1) y_1=w_1X_{11}+w_2X_{12}\tag{1} y1=w1X11+w2X12(1)
    y 2 = w 1 X 21 + w 2 X 22 (2) y_2=w_1X_{21}+w_2X_{22}\tag{2} y2=w1X21+w2X22(2)
    转换成矩阵表示如下:
    Y = X W (3) Y=XW\tag{3} Y=XW(3)
    Y = [ y 1 y 2 ] , X = [ x 11 x 12 x 21 x 22 ] , W = [ w 1 w 2 ] (4) Y=\begin{bmatrix}y_1\\\\y_2\end{bmatrix},X=\begin{bmatrix}x_{11}&&x_{12}\\\\x_{21}&&x_{22}\end{bmatrix},W=\begin{bmatrix}w_{1}\\\\w_{2}\end{bmatrix}\tag{4} Y= y1y2 ,X= x11x21x12x22 ,W= w1w2 (4)

  • 快速
    当使用python 中的numpy 库时候,在相对于 for 循环,Numpy 本身的计算提速相当快

  • 源代码

import time
import numpy as npif __name__ == "__main__":N = 1000000a = np.random.rand(N)b = np.random.rand(N)start = time.time()c = np.dot(a,b)stop = time.time()print(f"c={c}")print("vectorized version: " + str(1000*(stop-start))+"ms")c = 0start1 = time.time()for i in range(N):c += a[i]*b[i]stop1 = time.time()print(f"c={c}")print("for loop: " + str(1000*(stop1-start1))+"ms")times1 = (stop1-start1)/(stop-start)print(f"times1={times1}")
  • 结果
c=250071.8870070607
vectorized version: 6.549358367919922ms
c=250071.88700706122
for loop: 265.43641090393066ms
times1=40.52861303239898# 向量化居然比单独的for循环快40倍

2. 向量函数与矩阵求导初印象

  • 标量函数:输出为标量的函数
    f ( x ) = x 2 ⇒ x ∈ R → x 2 ∈ R f(x)=x^2\Rightarrow x\in R\rightarrow x^2 \in R f(x)=x2xRx2R
    f ( x ) = x 1 2 + x 2 2 ⇒ [ x 1 x 2 ] ∈ R 2 → x 1 2 + x 2 2 ∈ R f(x)=x_1^2+x_2^2\Rightarrow \begin{bmatrix}x_1\\\\x_2\end{bmatrix}\in R^2\rightarrow x_1^2+x_2^2 \in R f(x)=x12+x22 x1x2 R2x12+x22R
  • 向量函数:输出为向量或矩阵的函数
    <1> 输入标量,输出向量
    f ( x ) = [ f 1 ( x ) = x f 2 ( x ) = x 2 ] ⇒ x ∈ R , [ x x 2 ] ∈ R 2 f(x)=\begin{bmatrix}f_1(x)=x\\\\f_2(x)=x^2\end{bmatrix}\Rightarrow x\in R,\begin{bmatrix}x\\\\x^2\end{bmatrix} \in R^2 f(x)= f1(x)=xf2(x)=x2 xR, xx2 R2
    <2> 输入标量,输出矩阵
    f ( x ) = [ f 11 ( x ) = x f 12 ( x ) = x 2 f 21 ( x ) = x 3 f 22 ( x ) = x 4 ] ⇒ x ∈ R , [ x x 2 x 3 x 4 ] ∈ R 2 × 2 f(x)=\begin{bmatrix}f_{11}(x)=x&&f_{12}(x)=x^2\\\\f_{21}(x)=x^3&&f_{22}(x)=x^4\end{bmatrix}\Rightarrow x\in R,\begin{bmatrix}x&&x^2\\\\x^3&&x^4\end{bmatrix} \in R^{2\times2} f(x)= f11(x)=xf21(x)=x3f12(x)=x2f22(x)=x4 xR, xx3x2x4 R2×2
    <3> 输入向量,输出矩阵
    f ( x ) = [ f 11 ( x ) = x 1 + x 2 f 12 ( x ) = x 1 2 + x 2 2 f 21 ( x ) = x 1 3 + x 2 3 f 22 ( x ) = x 1 4 + x 2 4 ] ⇒ [ x 1 x 2 ] ∈ R 2 , [ x 1 + x 2 x 1 2 + x 2 2 x 1 3 + x 2 3 x 1 4 + x 2 4 ] ∈ R 2 × 2 f(x)=\begin{bmatrix}f_{11}(x)=x_1+x_2&&f_{12}(x)=x_1^2+x_2^2\\\\f_{21}(x)=x_1^3+x_2^3&&f_{22}(x)=x_1^4+x_2^4\end{bmatrix}\Rightarrow \begin{bmatrix}x_1\\\\x_2\end{bmatrix} \in R^2,\begin{bmatrix}x_1+x_2&&x_1^2+x_2^2\\\\x_1^3+x_2^3&&x_1^4+x_2^4\end{bmatrix} \in R^{2\times2} f(x)= f11(x)=x1+x2f21(x)=x13+x23f12(x)=x12+x22f22(x)=x14+x24 x1x2 R2, x1+x2x13+x23x12+x22x14+x24 R2×2
  • 总结
    矩阵求导的本质
    d A d B = 矩阵 A 中的每个元素对矩阵 B 中的每个元素求导 \frac{\mathrm{d}A}{\mathrm{d}B}=矩阵A中的每个元素对矩阵B中的每个元素求导 dBdA=矩阵A中的每个元素对矩阵B中的每个元素求导

3. YX 拉伸术

3.1 f(x)为标量,X为列向量

  • 标量不变,向量拉伸
  • YX中,Y前面横向拉,X后面纵向拉
    d f ( x ) d x , Y = f ( x ) 为标量, X = [ x 1 x 2 ⋮ x n ] 为列向量 \frac{\mathrm{d}f(x)}{\mathrm{d}x},Y=f(x)为标量,X=\begin{bmatrix}x_1\\\\x_2\\\\\vdots\\\\x_n\end{bmatrix}为列向量 dxdf(x),Y=f(x)为标量,X= x1x2xn 为列向量
    f ( x ) = f ( x 1 , x 2 , . . . . , x n ) 为标量 f(x)=f(x_1,x_2,....,x_n)为标量 f(x)=f(x1,x2,....,xn)为标量
  • 标量 f ( x ) f(x) f(x)不变,向量X 因为在YX拉伸术中在Y后面,所以向量X纵向拉伸,实际上就是将多元函数的偏导写在一个列向量中
    d f ( x ) d x = [ ∂ f ( x ) ∂ x 1 ∂ f ( x ) ∂ x 2 ⋮ ∂ f ( x ) ∂ x n ] \frac{\mathrm{d}f(x)}{\mathrm{d}x}=\begin{bmatrix}\frac{\partial f(x)}{\partial x_1}\\\\\frac{\partial f(x)}{\partial x_2}\\\\\vdots\\\\\frac{\partial f(x)}{\partial x_n}\end{bmatrix} dxdf(x)= x1f(x)x2f(x)xnf(x)

3.2 f(x)为列向量,X 为标量

f ( x ) = [ f 1 ( x ) f 2 ( x ) ⋮ f n ( x ) ] ; X 为标量 f(x)=\begin{bmatrix}f_1(x)\\\\f_2(x)\\\\\vdots\\\\f_n(x)\end{bmatrix};X 为标量 f(x)= f1(x)f2(x)fn(x) ;X为标量

  • 标量不变,向量拉伸
  • YX中,Y前面横向拉,X后面纵向拉
    d f ( x ) d x = [ ∂ f 1 ( x ) ∂ x ∂ f 2 ( x ) ∂ x … ∂ f n ( x ) ∂ x ] \frac{\mathrm{d}f(x)}{\mathrm{d}x}=\begin{bmatrix}\frac{\partial f_1(x)}{\partial x}&&\frac{\partial f_2(x)}{\partial x}&&\dots&&\frac{\partial f_n(x)}{\partial x}\end{bmatrix} dxdf(x)=[xf1(x)xf2(x)xfn(x)]

3.3 f(x)为列向量,X 为列向量

f ( x ) = [ f 1 ( x ) f 2 ( x ) ⋮ f n ( x ) ] ; X = [ x 1 x 2 ⋮ x n ] 为列向量 f(x)=\begin{bmatrix}f_1(x)\\\\f_2(x)\\\\\vdots\\\\f_n(x)\end{bmatrix};X=\begin{bmatrix}x_1\\\\x_2\\\\\vdots\\\\x_n\end{bmatrix}为列向量 f(x)= f1(x)f2(x)fn(x) ;X= x1x2xn 为列向量

  • 第一步先固定Y ,将 X 纵向拉
    d f ( x ) d x = [ ∂ f ( x ) ∂ x 1 ∂ f ( x ) ∂ x 2 ⋮ ∂ f ( x ) ∂ x n ] \frac{\mathrm{d}f(x)}{\mathrm{d}x}=\begin{bmatrix}\frac{\partial f(x)}{\partial x_1}\\\\\frac{\partial f(x)}{\partial x_2}\\\\\vdots\\\\\frac{\partial f(x)}{\partial x_n}\end{bmatrix} dxdf(x)= x1f(x)x2f(x)xnf(x)
  • 第二步,看每一个项 ∂ f ( x ) ∂ x 1 \frac{\partial f(x)}{\partial x_1} x1f(x),其中f(x)为列向量, x 1 x_1 x1为标量,那么可以看出要进行 Y 横向拉
    ∂ f ( x ) ∂ x 1 = [ ∂ f 1 ( x ) ∂ x 1 ∂ f 2 ( x ) ∂ x 1 … ∂ f n ( x ) ∂ x 1 ] \frac{\partial f(x)}{\partial x_1}=\begin{bmatrix}\frac{\partial f_1(x)}{\partial x_1}&&\frac{\partial f_2(x)}{\partial x_1}&&\dots&&\frac{\partial f_n(x)}{\partial x_1}\end{bmatrix} x1f(x)=[x1f1(x)x1f2(x)x1fn(x)]
  • 第三步 ,将每项整合如下
    d f ( x ) d x = [ ∂ f 1 ( x ) ∂ x 1 ∂ f 2 ( x ) ∂ x 1 … ∂ f n ( x ) ∂ x 1 ∂ f 1 ( x ) ∂ x 2 ∂ f 2 ( x ) ∂ x 2 … ∂ f n ( x ) ∂ x 2 ⋮ ⋮ … ⋮ ∂ f 1 ( x ) ∂ x n ∂ f 2 ( x ) ∂ x n … ∂ f n ( x ) ∂ x n ] \frac{\mathrm{d}f(x)}{\mathrm{d}x}=\begin{bmatrix}\frac{\partial f_1(x)}{\partial x_1}&&\frac{\partial f_2(x)}{\partial x_1}&&\dots&&\frac{\partial f_n(x)}{\partial x_1}\\\\\frac{\partial f_1(x)}{\partial x_2}&&\frac{\partial f_2(x)}{\partial x_2}&&\dots&&\frac{\partial f_n(x)}{\partial x_2}\\\\\vdots&&\vdots&&\dots&&\vdots\\\\\frac{\partial f_1(x)}{\partial x_n}&&\frac{\partial f_2(x)}{\partial x_n}&&\dots&&\frac{\partial f_n(x)}{\partial x_n}\end{bmatrix} dxdf(x)= x1f1(x)x2f1(x)xnf1(x)x1f2(x)x2f2(x)xnf2(x)x1fn(x)x2fn(x)xnfn(x)

4. 常见矩阵求导公式

4.1 Y = A T X Y=A^TX Y=ATX

f ( x ) = A T X ; A = [ a 1 , a 2 , … , a n ] T ; X = [ x 1 , x 2 , … , x n ] T , 求 d f ( x ) d X f(x)=A^TX;\quad A=[a_1,a_2,\dots,a_n]^T;\quad X=[x_1,x_2,\dots,x_n]^T,求\frac{\mathrm{d}f(x)}{\mathrm{d}X} f(x)=ATX;A=[a1,a2,,an]T;X=[x1,x2,,xn]T,dXdf(x)

  • 由于 A T = 1 × n , X = n × 1 , 那么 f ( x ) 为标量,即表示数值 A^T=1\times n,X=n\times1,那么f(x)为标量,即表示数值 AT=1×n,X=n×1,那么f(x)为标量,即表示数值
  • 标量不变,向量拉伸
  • YX中,Y前面横向拉,X后面纵向拉
    f ( x ) = ∑ i = 1 N a i x i f(x)=\sum_{i=1}^Na_ix_i f(x)=i=1Naixi
    d f ( x ) d X = [ ∂ f ( x ) ∂ x 1 ∂ f ( x ) ∂ x 2 ⋮ ∂ f ( x ) ∂ x n ] \frac{\mathrm{d}f(x)}{\mathrm{d}X}=\begin{bmatrix}\frac{\partial f(x)}{\partial x_1}\\\\\frac{\partial f(x)}{\partial x_2}\\\\\vdots\\\\\frac{\partial f(x)}{\partial x_n}\end{bmatrix} dXdf(x)= x1f(x)x2f(x)xnf(x)
  • 可以计算 ∂ f ( x ) ∂ x i \frac{\partial f(x)}{\partial x_i} xif(x)
    ∂ f ( x ) ∂ x i = a i \frac{\partial f(x)}{\partial x_i}=a_i xif(x)=ai
  • 可得如下:
    d f ( x ) d X = [ a 1 a 2 ⋮ a n ] = A \frac{\mathrm{d}f(x)}{\mathrm{d}X}=\begin{bmatrix}a_1\\\\a_2\\\\\vdots\\\\a_n\end{bmatrix}=A dXdf(x)= a1a2an =A
  • 结论:
    当 f ( x ) = A T X 当f(x)=A^TX f(x)=ATX
    d f ( x ) d X = A \frac{\mathrm{d}f(x)}{\mathrm{d}X}=A dXdf(x)=A

4.2 Y = X T A X Y=X^TAX Y=XTAX

f ( x ) = X T A X ; A = [ a 11 a 12 … a 1 n a 21 a 22 … a 2 n ⋮ ⋮ … ⋮ a n 1 a n 2 … a n n ] ; X = [ x 1 , x 2 , … , x n ] T , 求 d f ( x ) d X f(x)=X^TAX;\quad A=\begin{bmatrix}a_{11}&&a_{12}&&\dots&&a_{1n}\\\\a_{21}&&a_{22}&&\dots&&a_{2n}\\\\\vdots&&\vdots&&\dots&&\vdots\\\\a_{n1}&&a_{n2}&&\dots&&a_{nn}\end{bmatrix};\quad X=[x_1,x_2,\dots,x_n]^T,求\frac{\mathrm{d}f(x)}{\mathrm{d}X} f(x)=XTAX;A= a11a21an1a12a22an2a1na2nann ;X=[x1,x2,,xn]T,dXdf(x)
f ( x ) = ∑ i = 1 N ∑ j = 1 N a i j x i x j f(x)=\sum_{i=1}^N\sum_{j=1}^Na_{ij}x_ix_j f(x)=i=1Nj=1Naijxixj

  • 标量不变,YX拉伸术,X纵向拉伸
    d f ( x ) d X = [ ∂ f ( x ) ∂ x 1 ∂ f ( x ) ∂ x 2 ⋮ ∂ f ( x ) ∂ x n ] \frac{\mathrm{d}f(x)}{\mathrm{d}X}=\begin{bmatrix}\frac{\partial f(x)}{\partial x_1}\\\\\frac{\partial f(x)}{\partial x_2}\\\\\vdots\\\\\frac{\partial f(x)}{\partial x_n}\end{bmatrix} dXdf(x)= x1f(x)x2f(x)xnf(x)
    ∂ f ( x ) ∂ x i = [ a i 1 a i 2 … a i n ] [ x 1 x 2 ⋮ x n ] + [ a 1 i a 2 i … a n i ] [ x 1 x 2 ⋮ x n ] \frac{\partial f(x)}{\partial x_i}=\begin{bmatrix}a_{i1}&a_{i2}&\dots&a_{in}\end{bmatrix}\begin{bmatrix}x_1\\\\x_2\\\\\vdots\\\\x_n\end{bmatrix}+\begin{bmatrix}a_{1i}&a_{2i}&\dots&a_{ni}\end{bmatrix}\begin{bmatrix}x_1\\\\x_2\\\\\vdots\\\\x_n\end{bmatrix} xif(x)=[ai1ai2ain] x1x2xn +[a1ia2iani] x1x2xn
    d f ( x ) d X = [ a 11 a 12 … a 1 n a 21 a 22 … a 2 n ⋮ ⋮ … ⋮ a n 1 a n 2 … a n n ] [ x 1 x 2 ⋮ x n ] + [ a 11 a 21 … a n 1 a 12 a 22 … a n 2 ⋮ ⋮ … ⋮ a 1 n a 2 n … a n n ] [ x 1 x 2 ⋮ x n ] \frac{\mathrm{d}f(x)}{\mathrm{d}X}=\begin{bmatrix}a_{11}&a_{12}&\dots&a_{1n}\\\\a_{21}&a_{22}&\dots&a_{2n}\\\\\vdots&\vdots&\dots&\vdots\\\\a_{n1}&a_{n2}&\dots&a_{nn}\end{bmatrix}\begin{bmatrix}x_1\\\\x_2\\\\\vdots\\\\x_n\end{bmatrix}+\begin{bmatrix}a_{11}&a_{21}&\dots&a_{n1}\\\\a_{12}&a_{22}&\dots&a_{n2}\\\\\vdots&\vdots&\dots&\vdots\\\\a_{1n}&a_{2n}&\dots&a_{nn}\end{bmatrix}\begin{bmatrix}x_1\\\\x_2\\\\\vdots\\\\x_n\end{bmatrix} dXdf(x)= a11a21an1a12a22an2a1na2nann x1x2xn + a11a12a1na21a22a2nan1an2ann x1x2xn
  • 已知 A , A T A,A^T A,AT表示如下:
    A = [ a 11 a 12 … a 1 n a 21 a 22 … a 2 n ⋮ ⋮ … ⋮ a n 1 a n 2 … a n n ] ; A T = [ a 11 a 21 … a n 1 a 12 a 22 … a n 2 ⋮ ⋮ … ⋮ a 1 n a 2 n … a n n ] A=\begin{bmatrix}a_{11}&a_{12}&\dots&a_{1n}\\\\a_{21}&a_{22}&\dots&a_{2n}\\\\\vdots&\vdots&\dots&\vdots\\\\a_{n1}&a_{n2}&\dots&a_{nn}\end{bmatrix}\quad;A^T=\begin{bmatrix}a_{11}&a_{21}&\dots&a_{n1}\\\\a_{12}&a_{22}&\dots&a_{n2}\\\\\vdots&\vdots&\dots&\vdots\\\\a_{1n}&a_{2n}&\dots&a_{nn}\end{bmatrix} A= a11a21an1a12a22an2a1na2nann ;AT= a11a12a1na21a22a2nan1an2ann
  • 综上所述如下:
    f ( x ) = X T A X f(x)=X^TAX f(x)=XTAX
    d f ( x ) d X = A X + A T X = ( A + A T ) X \frac{\mathrm{d}f(x)}{\mathrm{d}X}=AX+A^TX=(A+A^T)X dXdf(x)=AX+ATX=(A+AT)X
http://www.zhongyajixie.com/news/8886.html

相关文章:

  • 游戏交易网站怎么做天津网站排名提升多少钱
  • 丰田车营销网站建设的纲要计划书新东方留学机构官网
  • 宝安网站建设深圳信科拓客最有效方案
  • 新手学做网站pdf手如何制作一个简单的网页
  • dw做网站导航条百度发布平台官网
  • 浏览器收录网站灰色行业seo
  • wordpress开cdn好吗沈阳百度seo
  • 公司建网站的详细步骤全网整合营销平台
  • 淘宝返利网站怎么做免费的推广平台
  • 爱玖货源站电脑培训中心
  • 织梦网站文章内容模板怎样创建网页
  • html布局模板苏州百度快速排名优化
  • 湖州住房和城乡建设厅网站怎么建立自己的网站平台
  • 网站建设越来越难做泉州seo代理计费
  • 万网云虚拟主机上传网站免费入驻的电商平台
  • 市政道路毕业设计代做网站营销推广
  • 建设银行u盾不能弹出银行网站十大营销策略
  • 网站栏目做树形结构图网络营销活动策划方案模板
  • 申请网站空间怎么做品牌营销策划公司
  • 龙岩网站制作多少钱杭州百家号优化
  • 网站开发公司+重庆it培训机构学费一般多少
  • 如何设计购物网站外贸seo推广
  • 三合一网站模板唐山网站建设方案优化
  • 网站制作有哪些方面微信小程序怎么开通
  • php网站开发人员重庆网站制作公司哪家好
  • 珠海美容网站建设网站seo的方法
  • 制作一个网站的一般步骤优化网站哪个好
  • 唐山地方志网站建设温州网站建设优化
  • 建设工程评标专家在哪个网站登录百度sem是什么
  • seo营销网站的设计标准太原seo外包平台