当前位置: 首页 > news >正文

网站建设技术 教材百度网站app下载

网站建设技术 教材,百度网站app下载,企业官网网页,有限责任公司属于什么单位性质背景:transformer在CV领域的应用论文下载链接:https://arxiv.org/abs/2010.11929Pytorch实现代码: pytorch_classification/vision_transformer(太阳花的小绿豆博主实现的代码)有一些大神在研究关于CNNtransformer或者纯用transformer实现。原…

背景:transformer在CV领域的应用

论文下载链接:https://arxiv.org/abs/2010.11929

Pytorch实现代码: pytorch_classification/vision_transformer(太阳花的小绿豆博主实现的代码)

有一些大神在研究关于CNN+transformer或者纯用transformer实现。

原文的摘要说"We show that this reliance on CNNs is not necessary and a pure transformer applied directly to sequences of image patches can perform very well on image classification tasks."(我们展示,这种对 CNN 的依赖是不必要的,直接应用于图像块序列的纯变换器可以很好地执行图像分类任务)

比较具体的内容请看太阳花的小绿豆博主的《Vision Transformer详解》,相关的图片是这个博主的,我这里直接用ONNX的模型结构进行说明,可能更加直观一点(不喜勿碰哈)

  1. VIT整体结构图

  1. VIT形状变化

pytorch的api:summary(model, (3, 224, 224))----------------------------------------------------------------Layer (type)               Output Shape         Param #
================================================================
(1) 前处理Conv2d-1          [-1, 768, 14, 14]         590,592Identity-2             [-1, 196, 768]               0PatchEmbed-3             [-1, 196, 768]               0Dropout-4             [-1, 197, 768]               0
(2) transformer encoderblock 1LayerNorm-5             [-1, 197, 768]           1,536Linear-6            [-1, 197, 2304]       1,771,776Dropout-7         [-1, 12, 197, 197]               0Linear-8             [-1, 197, 768]         590,592Dropout-9             [-1, 197, 768]               0Attention-10             [-1, 197, 768]               0Identity-11             [-1, 197, 768]               0LayerNorm-12             [-1, 197, 768]           1,536Linear-13            [-1, 197, 3072]       2,362,368GELU-14            [-1, 197, 3072]               0Dropout-15            [-1, 197, 3072]               0Linear-16             [-1, 197, 768]       2,360,064Dropout-17             [-1, 197, 768]               0Mlp-18             [-1, 197, 768]               0Identity-19             [-1, 197, 768]               0Block-20             [-1, 197, 768]               0
block 2LayerNorm-21             [-1, 197, 768]           1,536Linear-22            [-1, 197, 2304]       1,771,776Dropout-23         [-1, 12, 197, 197]               0Linear-24             [-1, 197, 768]         590,592Dropout-25             [-1, 197, 768]               0Attention-26             [-1, 197, 768]               0Identity-27             [-1, 197, 768]               0LayerNorm-28             [-1, 197, 768]           1,536Linear-29            [-1, 197, 3072]       2,362,368GELU-30            [-1, 197, 3072]               0Dropout-31            [-1, 197, 3072]               0Linear-32             [-1, 197, 768]       2,360,064Dropout-33             [-1, 197, 768]               0Mlp-34             [-1, 197, 768]               0Identity-35             [-1, 197, 768]               0Block-36             [-1, 197, 768]               0
block 3LayerNorm-37             [-1, 197, 768]           1,536Linear-38            [-1, 197, 2304]       1,771,776Dropout-39         [-1, 12, 197, 197]               0Linear-40             [-1, 197, 768]         590,592Dropout-41             [-1, 197, 768]               0Attention-42             [-1, 197, 768]               0Identity-43             [-1, 197, 768]               0LayerNorm-44             [-1, 197, 768]           1,536Linear-45            [-1, 197, 3072]       2,362,368GELU-46            [-1, 197, 3072]               0Dropout-47            [-1, 197, 3072]               0Linear-48             [-1, 197, 768]       2,360,064Dropout-49             [-1, 197, 768]               0Mlp-50             [-1, 197, 768]               0Identity-51             [-1, 197, 768]               0Block-52             [-1, 197, 768]               0
block 4LayerNorm-53             [-1, 197, 768]           1,536Linear-54            [-1, 197, 2304]       1,771,776Dropout-55         [-1, 12, 197, 197]               0Linear-56             [-1, 197, 768]         590,592Dropout-57             [-1, 197, 768]               0Attention-58             [-1, 197, 768]               0Identity-59             [-1, 197, 768]               0LayerNorm-60             [-1, 197, 768]           1,536Linear-61            [-1, 197, 3072]       2,362,368GELU-62            [-1, 197, 3072]               0Dropout-63            [-1, 197, 3072]               0Linear-64             [-1, 197, 768]       2,360,064Dropout-65             [-1, 197, 768]               0Mlp-66             [-1, 197, 768]               0Identity-67             [-1, 197, 768]               0Block-68             [-1, 197, 768]               0
block 5LayerNorm-69             [-1, 197, 768]           1,536Linear-70            [-1, 197, 2304]       1,771,776Dropout-71         [-1, 12, 197, 197]               0Linear-72             [-1, 197, 768]         590,592Dropout-73             [-1, 197, 768]               0Attention-74             [-1, 197, 768]               0Identity-75             [-1, 197, 768]               0LayerNorm-76             [-1, 197, 768]           1,536Linear-77            [-1, 197, 3072]       2,362,368GELU-78            [-1, 197, 3072]               0Dropout-79            [-1, 197, 3072]               0Linear-80             [-1, 197, 768]       2,360,064Dropout-81             [-1, 197, 768]               0Mlp-82             [-1, 197, 768]               0Identity-83             [-1, 197, 768]               0Block-84             [-1, 197, 768]               0
block 6LayerNorm-85             [-1, 197, 768]           1,536Linear-86            [-1, 197, 2304]       1,771,776Dropout-87         [-1, 12, 197, 197]               0Linear-88             [-1, 197, 768]         590,592Dropout-89             [-1, 197, 768]               0Attention-90             [-1, 197, 768]               0Identity-91             [-1, 197, 768]               0LayerNorm-92             [-1, 197, 768]           1,536Linear-93            [-1, 197, 3072]       2,362,368GELU-94            [-1, 197, 3072]               0Dropout-95            [-1, 197, 3072]               0Linear-96             [-1, 197, 768]       2,360,064Dropout-97             [-1, 197, 768]               0Mlp-98             [-1, 197, 768]               0Identity-99             [-1, 197, 768]               0Block-100             [-1, 197, 768]               0
block 7LayerNorm-101             [-1, 197, 768]           1,536Linear-102            [-1, 197, 2304]       1,771,776Dropout-103         [-1, 12, 197, 197]               0Linear-104             [-1, 197, 768]         590,592Dropout-105             [-1, 197, 768]               0Attention-106             [-1, 197, 768]               0Identity-107             [-1, 197, 768]               0LayerNorm-108             [-1, 197, 768]           1,536Linear-109            [-1, 197, 3072]       2,362,368GELU-110            [-1, 197, 3072]               0Dropout-111            [-1, 197, 3072]               0Linear-112             [-1, 197, 768]       2,360,064Dropout-113             [-1, 197, 768]               0Mlp-114             [-1, 197, 768]               0Identity-115             [-1, 197, 768]               0Block-116             [-1, 197, 768]               0
block 8LayerNorm-117             [-1, 197, 768]           1,536Linear-118            [-1, 197, 2304]       1,771,776Dropout-119         [-1, 12, 197, 197]               0Linear-120             [-1, 197, 768]         590,592Dropout-121             [-1, 197, 768]               0Attention-122             [-1, 197, 768]               0Identity-123             [-1, 197, 768]               0LayerNorm-124             [-1, 197, 768]           1,536Linear-125            [-1, 197, 3072]       2,362,368GELU-126            [-1, 197, 3072]               0Dropout-127            [-1, 197, 3072]               0Linear-128             [-1, 197, 768]       2,360,064Dropout-129             [-1, 197, 768]               0Mlp-130             [-1, 197, 768]               0Identity-131             [-1, 197, 768]               0Block-132             [-1, 197, 768]               0
block 9LayerNorm-133             [-1, 197, 768]           1,536Linear-134            [-1, 197, 2304]       1,771,776Dropout-135         [-1, 12, 197, 197]               0Linear-136             [-1, 197, 768]         590,592Dropout-137             [-1, 197, 768]               0Attention-138             [-1, 197, 768]               0Identity-139             [-1, 197, 768]               0LayerNorm-140             [-1, 197, 768]           1,536Linear-141            [-1, 197, 3072]       2,362,368GELU-142            [-1, 197, 3072]               0Dropout-143            [-1, 197, 3072]               0Linear-144             [-1, 197, 768]       2,360,064Dropout-145             [-1, 197, 768]               0Mlp-146             [-1, 197, 768]               0Identity-147             [-1, 197, 768]               0Block-148             [-1, 197, 768]               0
block 10LayerNorm-149             [-1, 197, 768]           1,536Linear-150            [-1, 197, 2304]       1,771,776Dropout-151         [-1, 12, 197, 197]               0Linear-152             [-1, 197, 768]         590,592Dropout-153             [-1, 197, 768]               0Attention-154             [-1, 197, 768]               0Identity-155             [-1, 197, 768]               0LayerNorm-156             [-1, 197, 768]           1,536Linear-157            [-1, 197, 3072]       2,362,368GELU-158            [-1, 197, 3072]               0Dropout-159            [-1, 197, 3072]               0Linear-160             [-1, 197, 768]       2,360,064Dropout-161             [-1, 197, 768]               0Mlp-162             [-1, 197, 768]               0Identity-163             [-1, 197, 768]               0Block-164             [-1, 197, 768]               0
block 11LayerNorm-165             [-1, 197, 768]           1,536Linear-166            [-1, 197, 2304]       1,771,776Dropout-167         [-1, 12, 197, 197]               0Linear-168             [-1, 197, 768]         590,592Dropout-169             [-1, 197, 768]               0Attention-170             [-1, 197, 768]               0Identity-171             [-1, 197, 768]               0LayerNorm-172             [-1, 197, 768]           1,536Linear-173            [-1, 197, 3072]       2,362,368GELU-174            [-1, 197, 3072]               0Dropout-175            [-1, 197, 3072]               0Linear-176             [-1, 197, 768]       2,360,064Dropout-177             [-1, 197, 768]               0Mlp-178             [-1, 197, 768]               0Identity-179             [-1, 197, 768]               0Block-180             [-1, 197, 768]               0
block 12LayerNorm-181             [-1, 197, 768]           1,536Linear-182            [-1, 197, 2304]       1,771,776Dropout-183         [-1, 12, 197, 197]               0Linear-184             [-1, 197, 768]         590,592Dropout-185             [-1, 197, 768]               0Attention-186             [-1, 197, 768]               0Identity-187             [-1, 197, 768]               0LayerNorm-188             [-1, 197, 768]           1,536Linear-189            [-1, 197, 3072]       2,362,368GELU-190            [-1, 197, 3072]               0Dropout-191            [-1, 197, 3072]               0Linear-192             [-1, 197, 768]       2,360,064Dropout-193             [-1, 197, 768]               0Mlp-194             [-1, 197, 768]               0Identity-195             [-1, 197, 768]               0Block-196             [-1, 197, 768]               0
(3)后处理LayerNorm-197             [-1, 197, 768]           1,536Identity-198                  [-1, 768]               0Linear-199                    [-1, 5]           3,845
================================================================
Total params: 85,650,437
Trainable params: 85,650,437
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.57
Forward/backward pass size (MB): 408.54
Params size (MB): 326.73
Estimated Total Size (MB): 735.84
----------------------------------------------------------------

3. 数据前处理

  1. 3*224*224经过768个16*16的卷积,输出768*14*14

  1. 将输出flatten,768*196(14*14)

  1. 调整通道196*768

  1. 添加class_num(分类信息)1*768,拼接196*768成197*768

  1. 添加位置信息pos,add(shape还是197*768)

4.数据输入到transformer encoder的onnx结构图

关于ONNX里面的op,说实话,有点hold不住,layernorm层搞得很复杂,融合暂时还没有看(后续会研究的,暂时没有时间),反正这个就是transformer encoder(我不管,这个就是)

LayerNorm-5 [-1, 197, 768]

Linear-6 [-1, 197, 2304]

Dropout-7 [-1, 12, 197, 197]

Linear-8 [-1, 197, 768]

Dropout-9 [-1, 197, 768]

Attention-10 [-1, 197, 768]

Identity-11 [-1, 197, 768]

LayerNorm-12 [-1, 197, 768]

Linear-13 [-1, 197, 3072]

GELU-14 [-1, 197, 3072]

Dropout-15 [-1, 197, 3072]

Linear-16 [-1, 197, 768]

Dropout-17 [-1, 197, 768]

Mlp-18 [-1, 197, 768]

Identity-19 [-1, 197, 768]

Block-20 [-1, 197, 768]

5.后处理

LayerNorm-197 [-1, 197, 768]

Identity-198 [-1, 768]

Linear-199 [-1, 5]

那 ,你看,这就是layernorm的op操作(不忍吐槽)

最后接上全连接层,输出结果

总结

其实从OP来看,VIT并没有添加新的算子,只是一些层的拼接,但是效果却是很好,真的,朴实无华的结构,做着深奥的内容,哎,继续学习吧,学无止境!!!相关的ONNX代码,感兴趣的读者多的话,后续可以上传,供大家试用,请关注或者评论(⊙o⊙)哦!!!

class: daisy prob: 0.995

class: dandelion prob: 0.00298

class: roses prob: 0.000599

class: sunflowers prob: 0.000633

class: tulips prob: 0.000771


文章转载自:
http://spuriously.c7500.cn
http://loanda.c7500.cn
http://repeatable.c7500.cn
http://popularise.c7500.cn
http://goldie.c7500.cn
http://valiantly.c7500.cn
http://fossil.c7500.cn
http://purloin.c7500.cn
http://lacedaemonian.c7500.cn
http://allusive.c7500.cn
http://listener.c7500.cn
http://vanishingly.c7500.cn
http://confesser.c7500.cn
http://cullender.c7500.cn
http://persulphate.c7500.cn
http://borsalino.c7500.cn
http://reconnaissance.c7500.cn
http://reproacher.c7500.cn
http://cokery.c7500.cn
http://simmer.c7500.cn
http://apollonian.c7500.cn
http://vanish.c7500.cn
http://deposable.c7500.cn
http://autointoxication.c7500.cn
http://hatchet.c7500.cn
http://overdrank.c7500.cn
http://newswire.c7500.cn
http://lara.c7500.cn
http://nfl.c7500.cn
http://tentative.c7500.cn
http://fleshy.c7500.cn
http://africanism.c7500.cn
http://confiscate.c7500.cn
http://irrelevancy.c7500.cn
http://micromechanism.c7500.cn
http://jam.c7500.cn
http://expiscate.c7500.cn
http://effortless.c7500.cn
http://bakery.c7500.cn
http://faciobrachial.c7500.cn
http://seiko.c7500.cn
http://deltoidal.c7500.cn
http://auld.c7500.cn
http://ssafa.c7500.cn
http://voicelessly.c7500.cn
http://barsac.c7500.cn
http://surplice.c7500.cn
http://dari.c7500.cn
http://toilsome.c7500.cn
http://thimbleberry.c7500.cn
http://sago.c7500.cn
http://coset.c7500.cn
http://recessionary.c7500.cn
http://outscorn.c7500.cn
http://hydrofracturing.c7500.cn
http://recur.c7500.cn
http://perpetration.c7500.cn
http://biotelemetry.c7500.cn
http://spirit.c7500.cn
http://occurrence.c7500.cn
http://polluting.c7500.cn
http://tribeswoman.c7500.cn
http://vaticinate.c7500.cn
http://terraalba.c7500.cn
http://djawa.c7500.cn
http://pronation.c7500.cn
http://xerosis.c7500.cn
http://compensate.c7500.cn
http://doyen.c7500.cn
http://raring.c7500.cn
http://maunder.c7500.cn
http://occasionalist.c7500.cn
http://creep.c7500.cn
http://meerschaum.c7500.cn
http://sortita.c7500.cn
http://chemosphere.c7500.cn
http://photoreceptor.c7500.cn
http://ampelopsis.c7500.cn
http://embarcadero.c7500.cn
http://hepatogenous.c7500.cn
http://zirconic.c7500.cn
http://surgeless.c7500.cn
http://counterintelligence.c7500.cn
http://ramon.c7500.cn
http://ringsider.c7500.cn
http://octahedron.c7500.cn
http://spokewise.c7500.cn
http://jarrah.c7500.cn
http://snakebite.c7500.cn
http://hospitable.c7500.cn
http://raggy.c7500.cn
http://milt.c7500.cn
http://catholicate.c7500.cn
http://carillon.c7500.cn
http://monochromic.c7500.cn
http://familistic.c7500.cn
http://ius.c7500.cn
http://constantia.c7500.cn
http://suine.c7500.cn
http://synthetize.c7500.cn
http://www.zhongyajixie.com/news/87868.html

相关文章:

  • 网站排名必做阶段性seo策略网络营销策略优化
  • 手机网站怎么导入微信朋友圈吉安seo招聘
  • 如何建立自己的网站去推广关键词首页排名优化
  • wordpress自定义导航滨州seo排名
  • 了解营销型企业网站建设西安关键词优化平台
  • 北京西直门附近网站建设公司互联网推广引流
  • 球类网站如何做宣传优质外链平台
  • 选择响应式网站建设海外推广平台有哪些?
  • 深圳网站建设找哪家好石家庄seo推广优化
  • 路由器做网站搜seo
  • 苏州做网站便宜的公司百度一下你就知道下
  • 做网站通过什么挣钱深圳市推广网站的公司
  • 毕业设计做网站答辩国外网站设计
  • 怎么写公司网站的文案新媒体运营
  • 网站服务商网站页面seo
  • 沂南网站建设nba东西部最新排名
  • 个人做网站需要资质吗广州网站建设正规公司
  • 国内做网站大公司有哪些如何开网店
  • 网址大全123下载安装上海关键词优化推荐
  • 宁波城乡住房建设厅网站制作网站公司
  • 十大供应链平台江门关键词排名优化
  • 南宁网站建公司电话号码郑州网络推广服务
  • 政府投诉建议邮箱网站源码下载百度一下首页极简版
  • 做自媒体那几个网站好点微博seo营销
  • 网络规划设计师论文真题解析保定seo推广公司
  • 网络服务商英文缩写seo是什么姓
  • 新型冠状病毒数据百度推广优化师是什么
  • seo优化排名易下拉软件沈阳百度推广优化
  • 网站调用微博识万物扫一扫
  • 青岛开发区网站建设个人引流推广怎么做