当前位置: 首页 > news >正文

毕业设计做网站答辩国外网站设计

毕业设计做网站答辩,国外网站设计,j2ee网站开发免费教程,企业网站建设的基本内容目录 一、数据及分析对象 二、目的及分析任务 三、方法及工具 四、数据读入 五、数据理解 六、数据准备 七、模型训练 八、模型评价 九、模型调参 十、模型改进 十一、模型预测 一、数据及分析对象 CSV文件——“bc_data.csv” 数据集链接:https://dow…

目录

一、数据及分析对象

二、目的及分析任务

三、方法及工具

四、数据读入

五、数据理解

六、数据准备

七、模型训练

八、模型评价

九、模型调参

十、模型改进

十一、模型预测


一、数据及分析对象

CSV文件——“bc_data.csv”

数据集链接:https://download.csdn.net/download/m0_70452407/88524905

该数据集主要记录了569个病例的32个属性,主要属性/字段如下:

(1)ID:病例的ID。

(2)Diagnosis(诊断结果):M为恶性,B为良性。该数据集共包含357个良性病例和212个恶性病例。

(3)细胞核的10个特征值,包括radius(半径)、texture(纹理)、perimeter(周长)、面积(area)、平滑度(smoothness)、紧凑度(compactness)、凹面(concavity)、凹点(concave points)、对称性(symmetry)和分形维数(fractal dimension)等。同时,为上述10个特征值分别提供了3种统计量,分别为均值(mean)、标准差(standard error)和最大值(worst or largest)。

二、目的及分析任务

理解机器学习方法在数据分析中的应用——KNN方法进行分类分析。

(1)样本为训练集进行有监督学习,并预测——“诊断结果(diagnosis)”。

(2)以剩余记录为测试集,进行KNN建模。

(3)按KNN模型预测测试集的dignosis类型。

(4)按KNN模型给出的diagnosis“预测类型”与数据集bc_data.csv自带的“实际类型”进行对比分析,验证KNN建模的有效性。

三、方法及工具

Python语言及scikit-learn包

四、数据读入

import pandas as pd
bc_data=pd.read_csv("D:\\Download\\JDK\\数据分析理论与实践by朝乐门_机械工业出版社\\第4章 分类分析\\bc_data.csv",header=0)
bc_data.head()

五、数据理解

对数据框bc_data进行探索性分析,这里采用的实现方法为调用pandas包中数据框(DataFrame)的describe()方法。

bc_data.describe()

除了describe()方法,还可以调用shape属性和pandas_profiling包对数据框进行探索性分析。

bc_data.shape
(569, 32)

六、数据准备

在数据框bc_data中,对于乳腺癌诊断分析有用的数据为细胞核的10个特征值,为了将该数据值提取出来,需要在数据框bc_data的基础上删除列名为“id”和“diagnosis”的数据,删除后的数据框命名为“data”,实现方式为调用数据框的drop()方法,并使用该包的head()方法观察数据情况。

data=bc_data.drop(['id'],axis=1)
X_data=data.drop(['diagnosis'],axis=1)
X_data.head()

 接着,调用NumPy的ravel()方法对数据框data中命名为“diagnosis”的列信息以视图形式(view)返回,并以一维数组形式输出。

import numpy as np
y_data=np.ravel(data[['diagnosis']])
y_data[0:6]
array(['M', 'M', 'M', 'M', 'M', 'M'], dtype=object)

为了实现基于KNN算法乳腺癌自动诊断的目标,先将data数据框信息随机分为训练集和测试集两部分。采用的实现方式为调用scikit-learn包中model_selection模块的train_test_split()方法,设定训练集数据容量占总数居的75%,剩下的为测试集数据,调用pandas包中数据框(DataFrame)的describe()方法。

from sklearn.model_selection import train_test_split
X_trainingSet,X_testSet,y_trainingSet,y_testSet=train_test_split(X_data,y_data,random_state=1,test_size=0.25)
X_trainingSet.describe()

 除了describe()方法,还可以调用shape属性和pandas_profiling包对数据框进行探索性分析。

X_trainingSet.shape
(426, 30)

 同时,对测试集数据框也对其做相同的处理。

X_testSet.describe()

X_testSet.shape
(143, 30)

对训练集数据进行“学习训练”后,自动获取它的均值和方差,再分别对训练集和测试集进行“归一化”处理。采用的实现方式为调用scikit-learn包中的preprocessing模块的StandardScaler()方法。其中,训练集数据的归一化处理如下:

from sklearn.preprocessing import StandardScaler
means_normalization=StandardScaler()   #均值归一化处理
means_normalization.fit(X_trainingSet)   #进行训练集的“诊断学习”,得到均值和方差
X_train_normalization=means_normalization.transform(X_trainingSet)
X_train_normalization
array([[ 0.30575375,  2.59521918,  0.46246107, ...,  1.81549702,2.10164609,  3.38609913],[ 0.23351721, -0.05334893,  0.20573083, ...,  0.5143837 ,0.14721854,  0.05182385],[ 0.15572401,  0.18345881,  0.11343692, ...,  0.69446859,0.263409  , -0.10011179],...,[ 0.85586279,  1.19276558,  0.89773369, ...,  1.12967374,0.75591781,  2.97065009],[-0.02486734,  0.44095848, -0.08606303, ..., -0.52515632,-1.1291423 , -0.45561747],[-0.30270019, -0.20968802, -0.37543871, ..., -0.967865  ,-1.54361274, -1.31500348]])

对测试集数据也采用相同的方式进行归一化处理。

X_test_normalization=means_normalization.transform(X_testSet)
X_test_normalization
array([[ 0.15850234, -1.23049032,  0.25369143, ..., -0.05738582,-0.08689656,  0.48863884],[-0.2638036 , -0.15450952, -0.23961754, ...,  1.41330744,1.77388495,  2.02105229],[-0.32492682, -0.76147305, -0.35407811, ..., -0.1354226 ,0.87210827,  0.71179432],...,[ 0.25852216, -0.06024625,  0.21500053, ..., -0.03937733,-1.03202789, -0.84910706],[ 1.46709506,  0.95825694,  1.49824869, ...,  0.62693676,0.07438274, -0.45739797],[-0.61942964,  0.42256565, -0.6261235 , ..., -0.48013509,0.34318156, -0.6134881 ]])

七、模型训练

训练集进行学习概念“诊断结果”,利用测试集进行KNN建模。通过对训练和测试数据进行适当的处理后,接下来进行模型参数的确定。KNN模型类别有暴力法、KD树和球树。暴力法适用于数据较少的形式,而KD树在较多的数据中更有优势,考虑到算法效率问题,结合本项目中数据框的数据量,选择KD树进行建模,首先取得KNN分类器,并使用内置参数调整KNN三要素。

这里采用的模型训练实现方式为scikit-learn包中的neighbors模块的KNeighborsClassifier()方法,其中对于设置的各项参数解释如下:

(1)algorithm表示快速k近邻搜索算法,这里确定的算法模型为KD树。

(2)leaf_size是构造KD树的大小,默认为30。

(3)metric用于距离度量,默认度量是minkowski。

(4)metric_params表示距离公式的其他关键参数,并不是很重要,使用默认的None。

(5)n_jobs是并行处理设置,使用默认的None。

(6)n_neighbors表示初始设定的近邻树,即KNN算法中的k值。

(7)p代表距离度量公式,其中1为哈曼顿距离公式,2为欧氏距离公式,这里使用欧氏距离公式进行距离度量,将p值设置为2。

(8)weights表权重,默认为uniform(均等权重)。

接着,利用训练函数fit()和预测函数predict()实现对训练集已知数据和测试集数据的对比输出。

from sklearn.neighbors import KNeighborsClassifier
myModel=KNeighborsClassifier(algorithm="kd_tree",leaf_size=30,metric="minkowski",metric_params=None,n_jobs=None,n_neighbors=5,p=2,weights="uniform")
myModel.fit(X_trainingSet,y_trainingSet)
y_predictSet=myModel.predict(X_testSet)

 fit()函数数据训练结果如下:

y_testSet
array(['B', 'M', 'B', 'M', 'M', 'M', 'M', 'M', 'B', 'B', 'B', 'M', 'M','B', 'B', 'B', 'B', 'B', 'B', 'M', 'B', 'B', 'M', 'B', 'M', 'B','B', 'M', 'M', 'M', 'M', 'B', 'M', 'M', 'B', 'B', 'M', 'B', 'M','B', 'B', 'B', 'B', 'B', 'B', 'M', 'B', 'B', 'B', 'M', 'M', 'M','B', 'B', 'B', 'B', 'B', 'M', 'B', 'B', 'B', 'M', 'B', 'B', 'B','B', 'B', 'M', 'B', 'B', 'B', 'B', 'M', 'M', 'B', 'M', 'M', 'M','B', 'M', 'B', 'M', 'B', 'M', 'B', 'B', 'M', 'B', 'M', 'B', 'B','M', 'B', 'B', 'M', 'M', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B','B', 'B', 'B', 'B', 'M', 'M', 'M', 'B', 'B', 'B', 'M', 'M', 'B','B', 'B', 'B', 'B', 'M', 'M', 'B', 'B', 'M', 'M', 'B', 'M', 'M','B', 'B', 'B', 'M', 'B', 'M', 'M', 'B', 'B', 'B', 'M', 'M', 'B'],dtype=object)

 用predict()函数进行预测的结果如下:

y_predictSet
array(['M', 'M', 'B', 'M', 'M', 'M', 'M', 'M', 'B', 'B', 'B', 'M', 'M','B', 'B', 'B', 'B', 'B', 'B', 'M', 'B', 'B', 'M', 'B', 'M', 'B','B', 'M', 'M', 'M', 'M', 'B', 'M', 'B', 'B', 'B', 'M', 'B', 'B','B', 'B', 'B', 'B', 'B', 'B', 'M', 'B', 'B', 'B', 'M', 'M', 'M','B', 'B', 'B', 'B', 'B', 'M', 'B', 'B', 'B', 'M', 'B', 'M', 'B','B', 'B', 'M', 'B', 'B', 'B', 'B', 'M', 'M', 'B', 'M', 'B', 'B','B', 'M', 'B', 'M', 'B', 'M', 'B', 'B', 'M', 'B', 'M', 'B', 'B','M', 'B', 'B', 'M', 'M', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B','B', 'B', 'B', 'B', 'M', 'M', 'B', 'B', 'B', 'B', 'M', 'M', 'B','B', 'B', 'B', 'B', 'M', 'M', 'B', 'B', 'M', 'M', 'M', 'M', 'M','B', 'B', 'B', 'M', 'B', 'M', 'M', 'M', 'B', 'B', 'M', 'M', 'B'],dtype=object)

最后,使用get_params()方法实现对模型各参数的查询:

myModel.get_params()
{'algorithm': 'kd_tree','leaf_size': 30,'metric': 'minkowski','metric_params': None,'n_jobs': None,'n_neighbors': 5,'p': 2,'weights': 'uniform'}

由上述输出结果可以看出,使用get_params()方法查询参数是以字典结构的形式展现,并且可以看到参数结果与之前设置保持一致。

八、模型评价

为了评价所建立模型的性能,采用“预测准确率(Accuracy Score)”参数,具体实现方式是调用scikit-learn包的metrics模块的accuracy_score()方法。

from sklearn.metrics import accuracy_score
accuracy_score(y_testSet,y_predictSet)
0.9370629370629371

 通过结果输出可知,模型预测结果的准确率约为93.71%,可以考虑尝试进一步优化。

九、模型调参

通过前面分析可知,k值的大小对模型预测结果会产生很多的影响。为此,接下来利用准确率函数score()来实现k值范围在1~22的准确率值计算。

import matplotlib.pyplot as plt
NumberOfNeighbors=range(1,23)
KNNs=[KNeighborsClassifier(n_neighbors=i) for i in NumberOfNeighbors]
range(len(KNNs))
scores=[KNNs[i].fit(X_trainingSet,y_trainingSet).score(X_testSet,y_testSet) for i in range(0,22)]
plt.plot(NumberOfNeighbors,scores)
plt.title("Elbow Curve")
plt.xlabel("Number of Neighbors")
plt.ylabel("Score")

通过图标信息可以看到,当k的值(即n_neighbors)为4时,模型预测得分最高,因此接下来对模型参数进行改进。

十、模型改进

myModel_prove=KNeighborsClassifier(algorithm="kd_tree",leaf_size=30,metric="minkowski",metric_params=None,n_jobs=None,n_neighbors=4,p=2,weights="uniform")
myModel_prove.fit(X_trainingSet,y_trainingSet)
y_predictSet=myModel_prove.predict(X_testSet)

十一、模型预测

 fit()函数数据训练结果如下:

y_predictSet
array(['B', 'M', 'B', 'M', 'M', 'M', 'M', 'M', 'B', 'B', 'B', 'B', 'M','B', 'B', 'B', 'B', 'B', 'B', 'M', 'B', 'B', 'M', 'B', 'M', 'B','B', 'M', 'M', 'M', 'M', 'B', 'M', 'B', 'B', 'B', 'M', 'B', 'B','B', 'B', 'B', 'B', 'B', 'B', 'M', 'B', 'B', 'B', 'M', 'M', 'M','B', 'B', 'B', 'B', 'B', 'M', 'B', 'B', 'B', 'M', 'B', 'M', 'B','B', 'B', 'M', 'B', 'B', 'B', 'B', 'M', 'M', 'B', 'M', 'B', 'B','B', 'M', 'B', 'M', 'B', 'M', 'B', 'B', 'M', 'B', 'M', 'B', 'B','M', 'B', 'B', 'M', 'M', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B','B', 'B', 'B', 'B', 'M', 'M', 'B', 'B', 'B', 'B', 'M', 'M', 'B','B', 'B', 'B', 'B', 'M', 'M', 'B', 'B', 'M', 'M', 'M', 'M', 'M','B', 'B', 'B', 'M', 'B', 'M', 'M', 'B', 'B', 'B', 'M', 'M', 'B'],dtype=object)

 用predict()函数进行预测的结果如下:

y_predictSet
array(['B', 'M', 'B', 'M', 'M', 'M', 'M', 'M', 'B', 'B', 'B', 'B', 'M','B', 'B', 'B', 'B', 'B', 'B', 'M', 'B', 'B', 'M', 'B', 'M', 'B','B', 'M', 'M', 'M', 'M', 'B', 'M', 'B', 'B', 'B', 'M', 'B', 'B','B', 'B', 'B', 'B', 'B', 'B', 'M', 'B', 'B', 'B', 'M', 'M', 'M','B', 'B', 'B', 'B', 'B', 'M', 'B', 'B', 'B', 'M', 'B', 'M', 'B','B', 'B', 'M', 'B', 'B', 'B', 'B', 'M', 'M', 'B', 'M', 'B', 'B','B', 'M', 'B', 'M', 'B', 'M', 'B', 'B', 'M', 'B', 'M', 'B', 'B','M', 'B', 'B', 'M', 'M', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B','B', 'B', 'B', 'B', 'M', 'M', 'B', 'B', 'B', 'B', 'M', 'M', 'B','B', 'B', 'B', 'B', 'M', 'M', 'B', 'B', 'M', 'M', 'M', 'M', 'M','B', 'B', 'B', 'M', 'B', 'M', 'M', 'B', 'B', 'B', 'M', 'M', 'B'],dtype=object)

为了评价所建立模型的性能,采用“预测准确率(Accuracy Score)”参数,具体实现方式是调用scikit-learn包的metrics模块的accuracy_score()方法。

accuracy_score(y_testSet,y_predictSet)
0.9440559440559441

从输出结果可以看出,模型的预测准确率提高了,说明对模型进行了优化。 


文章转载自:
http://toxophilitic.c7617.cn
http://edd.c7617.cn
http://ushership.c7617.cn
http://norwards.c7617.cn
http://companionway.c7617.cn
http://submersion.c7617.cn
http://northeaster.c7617.cn
http://semiabstract.c7617.cn
http://pleurotomy.c7617.cn
http://passionfruit.c7617.cn
http://terror.c7617.cn
http://arabia.c7617.cn
http://osteology.c7617.cn
http://reboot.c7617.cn
http://proseman.c7617.cn
http://exhume.c7617.cn
http://lossy.c7617.cn
http://cerdar.c7617.cn
http://haggadist.c7617.cn
http://sixty.c7617.cn
http://special.c7617.cn
http://pinxit.c7617.cn
http://barramunda.c7617.cn
http://emerson.c7617.cn
http://shm.c7617.cn
http://kelp.c7617.cn
http://obstructionist.c7617.cn
http://watchcase.c7617.cn
http://calcitonin.c7617.cn
http://paperboard.c7617.cn
http://proselytism.c7617.cn
http://unslum.c7617.cn
http://ancient.c7617.cn
http://frena.c7617.cn
http://yale.c7617.cn
http://splenology.c7617.cn
http://palatal.c7617.cn
http://badness.c7617.cn
http://pugnacious.c7617.cn
http://goulard.c7617.cn
http://subcompany.c7617.cn
http://remoralize.c7617.cn
http://atopy.c7617.cn
http://multiparous.c7617.cn
http://laryngoscope.c7617.cn
http://wirescape.c7617.cn
http://rurally.c7617.cn
http://avicide.c7617.cn
http://subserve.c7617.cn
http://slavophobist.c7617.cn
http://pleurisy.c7617.cn
http://naxos.c7617.cn
http://regorge.c7617.cn
http://alcoa.c7617.cn
http://haunting.c7617.cn
http://sled.c7617.cn
http://indirection.c7617.cn
http://vodun.c7617.cn
http://fatheaded.c7617.cn
http://monetize.c7617.cn
http://beata.c7617.cn
http://overran.c7617.cn
http://proclamation.c7617.cn
http://lazyboots.c7617.cn
http://shininess.c7617.cn
http://deploitation.c7617.cn
http://gwendolyn.c7617.cn
http://unaired.c7617.cn
http://misguidance.c7617.cn
http://harness.c7617.cn
http://other.c7617.cn
http://phanerogamous.c7617.cn
http://showground.c7617.cn
http://cadaverize.c7617.cn
http://alluvia.c7617.cn
http://inkosi.c7617.cn
http://jambiya.c7617.cn
http://fleshless.c7617.cn
http://longaeval.c7617.cn
http://hydromel.c7617.cn
http://pullulation.c7617.cn
http://unguent.c7617.cn
http://periclase.c7617.cn
http://mastocarcinoma.c7617.cn
http://breathlessly.c7617.cn
http://xeroform.c7617.cn
http://hydroaeroplane.c7617.cn
http://rosiny.c7617.cn
http://ozostomia.c7617.cn
http://moesogoth.c7617.cn
http://cercaria.c7617.cn
http://offenceful.c7617.cn
http://subproblem.c7617.cn
http://cowage.c7617.cn
http://osmund.c7617.cn
http://compel.c7617.cn
http://coulometer.c7617.cn
http://ceder.c7617.cn
http://town.c7617.cn
http://verel.c7617.cn
http://www.zhongyajixie.com/news/87852.html

相关文章:

  • 怎么写公司网站的文案新媒体运营
  • 网站服务商网站页面seo
  • 沂南网站建设nba东西部最新排名
  • 个人做网站需要资质吗广州网站建设正规公司
  • 国内做网站大公司有哪些如何开网店
  • 网址大全123下载安装上海关键词优化推荐
  • 宁波城乡住房建设厅网站制作网站公司
  • 十大供应链平台江门关键词排名优化
  • 南宁网站建公司电话号码郑州网络推广服务
  • 政府投诉建议邮箱网站源码下载百度一下首页极简版
  • 做自媒体那几个网站好点微博seo营销
  • 网络规划设计师论文真题解析保定seo推广公司
  • 网络服务商英文缩写seo是什么姓
  • 新型冠状病毒数据百度推广优化师是什么
  • seo优化排名易下拉软件沈阳百度推广优化
  • 网站调用微博识万物扫一扫
  • 青岛开发区网站建设个人引流推广怎么做
  • 好用的网站模板百度搜索seo优化技巧
  • wordpress图片音乐主题沈阳百度快照优化公司
  • 2在线做网站短视频seo询盘获客系统
  • 举例描述该如何布局网站关键词微信上怎么做广告推广
  • 织梦 旅游网站模板免费的网站
  • 凡科网做的网站在百度上能找到吗专业提升关键词排名工具
  • 柳州专业做网站百度云超级会员试用1天
  • 做化妆品等的网站seo网站管理
  • 如何做网站首页武汉seo搜索引擎
  • 淮安市哪里可以做网站如何策划一个营销方案
  • 河北保定网站建设培训总结心得体会
  • 做平面vi网站关键词搜索工具有哪些
  • 宜选科技就是帮人做网站百度如何发布作品