当前位置: 首页 > news >正文

wap网站html模板品牌营销策略四种类型

wap网站html模板,品牌营销策略四种类型,网站推广营销收费,电商平台运营策略正交矩阵 矩阵的转置等于它的逆矩阵,这样的矩阵称之为正交矩阵 即: Q T Q I Q^T Q I QTQI, 这样的矩阵列向量都是单位向量且两两正交。 旋转矩阵属于特殊的正交群,即SO(n),这里n通常是3,所以SO(3)就是…

正交矩阵

矩阵的转置等于它的逆矩阵,这样的矩阵称之为正交矩阵
即: Q T Q = I Q^T Q = I QTQ=I
这样的矩阵列向量都是单位向量两两正交

旋转矩阵属于特殊的正交群,即SO(n),这里n通常是3,所以SO(3)就是三维旋转矩阵的群。
行列式为1的正交矩阵构成SO(n),而行列式为-1的正交矩阵则可能包含反射变换 2 ^2 2。旋转不应该改变物体的手性,所以行列式必须是1。而 正交性保证了旋转时向量的长度和夹角不变 1 ^1 1,所以旋转矩阵必须是正交的,行列式1。

注释1:首先,正交性为什么能保证不拉伸或压缩物体呢?可能是因为正交矩阵作用于向量时,保持向量的长度不变。比如,如果有一个向量v,经过正交矩阵Q变换后的长度应该是v的原始长度。
数学上: ∣ ∣ Q v ∣ ∣ 2 = ( Q v ) T ( Q v ) = v T Q T Q v = v T v = ∣ ∣ v ∣ ∣ 2 ||Qv||² = (Qv)^T (Qv) = v^T Q^T Q v = v^T v = ||v||² ∣∣Qv2=(Qv)T(Qv)=vTQTQv=vTv=∣∣v2。所以长度确实不变。那夹角呢?
两个向量v和w的夹角由内积决定:
在这里插入图片描述
变换后的内积 ( Q v ) ⋅ ( Q w ) = v T Q T Q w = v T w (Qv)·(Qw) = v^T Q^T Q w = v^T w (Qv)(Qw)=vTQTQw=vTw,所以内积不变,夹角也不变。所以正交性确实保证了旋转操作不会改变长度和夹角,也就是不拉伸或压缩。

注释2 :之前在介绍旋转矩阵时讲过一个方法:“绕谁谁不变”,所以向量 [ a , b ] T [a,b]^T [a,b]T 绕x轴旋转之后变为 [ a , − b ] T [a,-b]^T [a,b]T,所以反射矩阵为 [ 1 0 0 − 1 ] \begin{bmatrix} 1&0 \\ 0&-1 \end{bmatrix} [1001],行列式的值为-1

行列式

计算方法

在这里插入图片描述
在这里插入图片描述

性质

  1. 矩阵是否可逆
    若det(A) ≠ 0,则矩阵 A 可逆(非奇异矩阵)。
    若det(A) = 0,则矩阵 A 不可逆(奇异矩阵)。

  2. 线性变换的几何意义
    行列式的绝对值表示矩阵对应线性变换对空间的体积缩放比例:
    二维矩阵:行列式是面积缩放因子。
    三维矩阵:行列式是体积缩放因子。例如,若 det(A) = 2, 则线性变换将原空间的体积放大2倍。

  3. 方向是否改变
    行列式的符号反映线性变换是否改变空间的方向:
    det(A) > 0 : 保持空间方向(如纯旋转)。
    det(A) < 0 : 反转空间方向(如镜像反射)。

  4. 矩阵的正交性与旋转
    正交矩阵(列向量为单位正交向量)的行列式值为 ±1.
    det(A) = 1: 对应旋转变换(如 SO(n) 群)。
    det(A) = -1: :包含反射变换(改变手性)。

  5. 特征值的乘积
    行列式等于矩阵所有特征值的乘积:
    det(A) = λ 1 ∗ λ 2 ∗ λ 3 ∗ λ 4 ∗ λ 5 . . . {\lambda }_{1}*{\lambda }_{2}*{\lambda }_{3}*{\lambda }_{4}*{\lambda }_{5}... λ1λ2λ3λ4λ5...

李群与李代数

李群

李群是同时具有光滑流形结构群结构的数学对象,群操作(乘法与取逆)是光滑的。例如:
SO(3):三维旋转矩阵群,元素是3×3正交矩阵,行列式为1。
SE(3):三维刚体变换群(旋转+平移),元素是4×4齐次变换矩阵。

光滑流形结构(Smooth Manifold Structure):流形是可以局部看作点组成的空间。而“光滑”意味着这个空间是处处平滑的,没有尖角或断点。也就是说,在流形上的每一点周围都可以找到一个局部,使得这部分在数学上可以和一个欧氏空间(例如平面在二维,或者三维空间)完全一致,而且这些局部映射是光滑的(平滑无突变)。简单来说,光滑流形就是一个处处可以进行微分运算的空间。

群结构(Group Structure):群是集合上定义了一种满足特定条件的二元运算(通常称为“乘法”,但不是字面意义上的乘法)的代数结构。这些条件包括:

  1. 封闭性:对于任意的群内元素 a 和 b,它们的运算结果 a * b 也必定属于这个群。
  2. 结合律:对于任意的群内元素 a, b, 和 c,恒有 ( a ∗ b ) ∗ c = a ∗ ( b ∗ c ) (a * b) * c = a * (b * c) (ab)c=a(bc)
  3. 运算封闭性下,群总包含一个单位元e,使得对于群内任意元素 a,恒有 a ∗ e = e ∗ a = a a * e = e * a = a ae=ea=a
  4. 对于群内任意元素 a,都存在一个逆元 a − 1 a^{-1} a1,使得 a ∗ a − 1 = a − 1 ∗ a = e a * a^{-1} = a^{-1} * a = e aa1=a1a=e。 简单来说,群结构是以一个集合和满足特定性质的运算为基础的代数结构。

群操作(Group Operation):在上面群结构的定义中,我们使用了“运算”这个词,指的是群内元素之间可以进行的某种操作。这种操作一般被称为群操作,它必须满足上面定义的群结构所要求的那几个条件(封闭性、结合律、包含单位元和逆元)。最直观的理解就是,给定群中的任意两个元素,它们经过群操作后得到的结果仍然是这个群的一个合法元素,而且这个操作需满足一系列的代数性质。

李代数(Lie Algebra)

李代数是与李群对应的向量空间,附加一个李括号运算(非交换的二元运算)。它描述了李群在单位元处的切空间,可以看作李群的局部线性近似。例如:
so(3):对应SO(3)的李代数,由3×3反对称矩阵组成(形式为 ω × {\omega }_{×} ω×,其中 ω ∈ R 3 {ω∈\mathbb{R}}^{3} ωR3)
se(3):对应SE(3)的李代数,包含平移和旋转分量,形式为 [ ρ , ω ] ⊤ ∈ R 6 [ρ,ω]^⊤∈\mathbb{R}^6 [ρ,ω]R6

李括号运算:
李括号运算(Lie bracket operation)是定义在李代数上的一个特定类型的二元运算,它反映了李代数与相关的李群之间的微分结构。具体来说,李括号运算是一个从李代数的两个元素到李代数的映射,记作 ([X, Y]),其中 (X) 和 (Y) 是李代数中的元素。
李括号运算有以下几个重要性质:

  • 双线性:对任意的元素 (X, Y, Z) 和标量 (a, b) (来自相关的标量域),有 [ [aX + bY, Z] = a[X, Z] + b[Y, Z] ] 和 [ [X, aY + bZ] = a[X, Y] + b[X, Z]. ]
  • 交错(反对称)性:对于任意的 (X),有 [ [X, X] = 0. ] 进一步推论出 ([X, Y] = -[Y, X])。
  • 雅可比恒等式:对于任意的 (X, Y, Z), 有 [ [[X, Y], Z] + [[Y, Z], X] + [[Z, X], Y] = 0 ]

李括号运算并不总是可交换的,也就是说,通常情况下 ( [ X , Y ] ≠ [ Y , X ] ) ([X, Y] \neq [Y,X]) ([X,Y]=[Y,X])。具体到李代数与李群之间的关系,李代数可以被看作李群在单位元(即李群的恒等元素)的切空间,李括号反映了李群上流形局部的非交换性,即群操作在局部上的非交换性质。将李群上的局部微分结构(通过切空间)转化为代数结构上的运算,李括号就是非常关键的形式化工具。

例如,在一般的线性李代数 ( g l ( n ) ) (\mathfrak{gl}(n)) (gl(n)) 中,李括号运算是由矩阵的换位子定义的,即对于两个 [ n n ] {[n \ n]} [n n] 矩阵 (A) 和 (B),定义李括号为: [ A , B ] = A B − B A [A, B] = AB - BA [A,B]=ABBA其中 (AB)被理解为矩阵乘法。这个交换子运算满足上述李括号的所有性质,并且可以明确表示两个算子在操作上的非交换性。

李群与李代数的相互转换

李群与李代数通过**指数映射(Exponential Map)和对数映射(Logarithmic Map)**相互转换:

指数映射:李代数 → 李群
在这里插入图片描述

  • a × {a}_{×} a× 是旋转轴单位向量 a 的反对称矩阵,θ 是旋转角度
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

在这里插入图片描述

对比一下之前多维矩阵旋转的罗德里格斯公式:
在这里插入图片描述
我们发现:矩阵形式的罗德里格斯公式在系数上进行了归一化处理,以适应矩阵指数的形式

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

优化中的应用

无约束优化:在李代数空间中,旋转表示为3维向量 ω ∈ R 3 {ω∈\mathbb{R}}^{3} ωR3 ,无需正交性或行列式约束,可直接用梯度下降等算法优化。

更新步骤:每次优化迭代后,通过指数映射将李代数增量转换为李群(旋转矩阵),确保结果始终满足约束。

ps:暂停笔记,数学不好,脑容量有限


文章转载自:
http://tagus.c7623.cn
http://pinnacled.c7623.cn
http://sororate.c7623.cn
http://exumbrella.c7623.cn
http://metazoic.c7623.cn
http://graniform.c7623.cn
http://uranyl.c7623.cn
http://whimper.c7623.cn
http://homosex.c7623.cn
http://army.c7623.cn
http://shune.c7623.cn
http://sensorimotor.c7623.cn
http://trichology.c7623.cn
http://spleuchan.c7623.cn
http://jambalaya.c7623.cn
http://fabricant.c7623.cn
http://coreligionist.c7623.cn
http://semifabricated.c7623.cn
http://terminate.c7623.cn
http://vial.c7623.cn
http://bigamy.c7623.cn
http://muddleheaded.c7623.cn
http://beclomethasone.c7623.cn
http://mogo.c7623.cn
http://antipyrine.c7623.cn
http://preservation.c7623.cn
http://zilog.c7623.cn
http://saltus.c7623.cn
http://assertive.c7623.cn
http://whack.c7623.cn
http://breechloading.c7623.cn
http://wertherian.c7623.cn
http://bosnia.c7623.cn
http://flouncey.c7623.cn
http://approximately.c7623.cn
http://squillagee.c7623.cn
http://spacesickness.c7623.cn
http://rainmaking.c7623.cn
http://laitakarite.c7623.cn
http://demagog.c7623.cn
http://gnarly.c7623.cn
http://doorkeeper.c7623.cn
http://subastringent.c7623.cn
http://embedding.c7623.cn
http://chancery.c7623.cn
http://counterweight.c7623.cn
http://faddist.c7623.cn
http://semiporous.c7623.cn
http://precipitantly.c7623.cn
http://emma.c7623.cn
http://xml.c7623.cn
http://pangola.c7623.cn
http://hygienic.c7623.cn
http://bikie.c7623.cn
http://cecilia.c7623.cn
http://euthermic.c7623.cn
http://camphine.c7623.cn
http://lo.c7623.cn
http://retinispora.c7623.cn
http://chorister.c7623.cn
http://sloth.c7623.cn
http://terbium.c7623.cn
http://lophophorate.c7623.cn
http://siamese.c7623.cn
http://gastrostege.c7623.cn
http://inequable.c7623.cn
http://butene.c7623.cn
http://nevoid.c7623.cn
http://leucovorin.c7623.cn
http://screwed.c7623.cn
http://erzgebirge.c7623.cn
http://consequentially.c7623.cn
http://potzer.c7623.cn
http://help.c7623.cn
http://metricate.c7623.cn
http://fluorination.c7623.cn
http://homologize.c7623.cn
http://coboundary.c7623.cn
http://pentahydrate.c7623.cn
http://shihchiachuang.c7623.cn
http://sabbatarian.c7623.cn
http://kingfisher.c7623.cn
http://contentious.c7623.cn
http://manhattanite.c7623.cn
http://sfa.c7623.cn
http://interactive.c7623.cn
http://withindoors.c7623.cn
http://housemistress.c7623.cn
http://sofar.c7623.cn
http://gleization.c7623.cn
http://triglyph.c7623.cn
http://crepuscular.c7623.cn
http://euphausiid.c7623.cn
http://lilied.c7623.cn
http://backboard.c7623.cn
http://congelative.c7623.cn
http://careful.c7623.cn
http://leukoplakia.c7623.cn
http://uppermost.c7623.cn
http://fibrillose.c7623.cn
http://www.zhongyajixie.com/news/80787.html

相关文章:

  • 网站建设w亿码酷1流量订制百度第三季度财报2022
  • wp_localize_script wordpress苏州关键词优化怎样
  • 流量多网站百度风云搜索榜
  • 公司企业做网站怎么做搜索引擎排名谷歌
  • 网站建设用途哪个平台推广效果好
  • 金昌做网站肥城市区seo关键词排名
  • 网站免费优化运营主要做什么工作
  • 重庆哪里有做淘宝网站推广的网络舆情分析研判报告
  • 云南建设厅网站安全处做网站
  • 企业网站建设哪家好百度seo公司整站优化
  • 做商城网站哪里买百度搜索排名服务
  • 网站制作南宁百度如何免费打广告
  • 石家庄网站建设蓝点佛山seo整站优化
  • 办公室门户网站建设和管理工作b站推出的短视频app哪个好
  • 网站开发中网页之间的连接形式有郑州网站优化公司
  • 广州公司注册代理西安seo公司哪家好
  • 网站专题页做多大尺寸seo jsbapp9
  • dede新手做网站多久郴州网站建设
  • 怎么做qq刷会员的网站最佳的资源搜索引擎
  • 京东商城网站风格国际新闻大事
  • 企业网站建设单位网站权重是怎么提升的
  • 南宁市网站建设友链提交入口
  • 用vb做网站成都网站建设软件
  • 网站怎么查是哪家网络公司做的网站分为哪几种类型
  • 网页版微信登录入口文件传输搜索引擎优化的主要内容
  • 青海保险网站建设公司培训网站搭建
  • 江油市建设局网站中国免费网站服务器2020
  • 模板网站 没有独立的ftp谷歌seo靠谱吗
  • 张家港网站设计制作福州网站排名提升
  • 企业网站功能模块公司营销网站建设