当前位置: 首页 > news >正文

石家庄网站建设蓝点佛山seo整站优化

石家庄网站建设蓝点,佛山seo整站优化,国内做的好的电商网站有哪些,免费的小程序制作工具欢迎关注我的CSDN:https://spike.blog.csdn.net/ 本文地址:https://spike.blog.csdn.net/article/details/134328447 在 蛋白质复合物结构预测 的过程中,模版 (Template) 起到重要作用,提供预测结果的关于三维结构的先验信息&…

欢迎关注我的CSDN:https://spike.blog.csdn.net/
本文地址:https://spike.blog.csdn.net/article/details/134328447

在 蛋白质复合物结构预测 的过程中,模版 (Template) 起到重要作用,提供预测结果的关于三维结构的先验信息,在多链的情况,需要进行模版配对,即 Template Pair,核心函数是 template_pair_embedder,结合 AlphaFold2 的论文,分析具体输入与输出的特征。

核心逻辑 template_pair_embedder(),输入和输出特征维度:

[CL] TemplateEmbedderMultimer - template_dgram: torch.Size([1, 1102, 1102, 39])
[CL] TemplateEmbedderMultimer - z: torch.Size([1102, 1102, 128])
[CL] TemplateEmbedderMultimer - pseudo_beta_mask: torch.Size([1, 1102])
[CL] TemplateEmbedderMultimer - backbone_mask: torch.Size([1, 1102])
[CL] TemplateEmbedderMultimer - multichain_mask_2d: torch.Size([1102, 1102])
[CL] TemplateEmbedderMultimer - unit_vector: torch.Size([1, 1102, 1102])
[CL] TemplateEmbedderMultimer - pair_act: torch.Size([1, 1102, 1102, 64])

函数:

# openfold/model/embedders.py
pair_act = self.template_pair_embedder(template_dgram,aatype_one_hot,z,pseudo_beta_mask,backbone_mask,multichain_mask_2d,unit_vector,
)t = torch.sum(t, dim=-4) / n_templ
t = torch.nn.functional.relu(t)
t = self.linear_t(t)  # 从 c_t 维度 转换 成 c_z 维度,更新 z
template_embeds["template_pair_embedding"] = t# openfold/model/model.py
template_embeds = self.template_embedder(template_feats,z,pair_mask.to(dtype=z.dtype),no_batch_dims,chunk_size=self.globals.chunk_size,multichain_mask_2d=multichain_mask_2d,use_fa=self.globals.use_fa,
)
z = z + template_embeds["template_pair_embedding"]  # line 13 in Alg.2

逻辑图:

Template Pairing


1. template_dgram 特征

template_dgram特征计算,不同点距离其他点的远近划分,共划分 39 个bin,Template 的 no_bin 是 1.25 计算 1 个值,即 (50.75 - 3.25) / 38 = 1.25,即:

template_dgram = dgram_from_positions(template_positions,inf=self.config.inf,**self.config.distogram,
)def dgram_from_positions(pos: torch.Tensor,min_bin: float = 3.25,max_bin: float = 50.75,no_bins: float = 39,inf: float = 1e8,
):dgram = torch.sum((pos[..., None, :] - pos[..., None, :, :]) ** 2, dim=-1, keepdim=True)lower = torch.linspace(min_bin, max_bin, no_bins, device=pos.device) ** 2upper = torch.cat([lower[1:], lower.new_tensor([inf])], dim=-1)dgram = ((dgram > lower) * (dgram < upper)).type(dgram.dtype)return dgram

Template 的 no_bin 是 1.25 计算 1 个值,即 (50.75 - 3.25) / 38 = 1.25,长度是 39。

其中,template_positions 特征,如下:

  • 输入 template_pseudo_betatemplate_pseudo_beta_mask
  • 输出坐标 template_positions,即 template_pseudo_beta 的值
template_positions, pseudo_beta_mask = (single_template_feats["template_pseudo_beta"],single_template_feats["template_pseudo_beta_mask"],
)

其中pseudo_beta 特征的处理,来源于 openfold/data/data_transforms_multimer.py 即:

  • 输入特征:template_aatypetemplate_all_atom_positionstemplate_all_atom_mask
  • 原理是:选择 CA 或 CB 原子的坐标与 Mask

源码即调用关系如下:

# 输入特征,模型预测结构
# run_pretrained_openfold.py
processed_feature_dict, _ = feature_processor.process_features(feature_dict, is_multimer, mode="predict"
)
output_dict = predict_structure_single_dev(args,model_name,current_model,fasta_path,processed_feature_dict,config,
)# openfold/data/feature_pipeline.py
processed_feature, label = np_example_to_features_multimer(np_example=raw_features,config=self.config,mode=mode,
)# openfold/data/feature_pipeline.py
features, label = input_pipeline_multimer.process_tensors_from_config(tensor_dict,cfg.common,cfg[mode],cfg.data_module,
)# openfold/data/input_pipeline_multimer.py
nonensembled = nonensembled_transform_fns(common_cfg,mode_cfg,
)
tensors = compose(nonensembled)(tensors)# openfold/data/input_pipeline_multimer.py
operators.extend([data_transforms_multimer.make_atom14_positions,data_transforms_multimer.atom37_to_frames,data_transforms_multimer.atom37_to_torsion_angles(""),data_transforms_multimer.make_pseudo_beta(""),data_transforms_multimer.get_backbone_frames,data_transforms_multimer.get_chi_angles,]
)# openfold/data/data_transforms_multimer.py
def make_pseudo_beta(protein, prefix=""):"""Create pseudo-beta (alpha for glycine) position and mask."""assert prefix in ["", "template_"](protein[prefix + "pseudo_beta"],protein[prefix + "pseudo_beta_mask"],) = pseudo_beta_fn(protein["template_aatype" if prefix else "aatype"],protein[prefix + "all_atom_positions"],protein["template_all_atom_mask" if prefix else "all_atom_mask"],)return protein# openfold/data/data_transforms_multimer.py
def pseudo_beta_fn(aatype, all_atom_positions, all_atom_mask):"""Create pseudo beta features."""if aatype.shape[0] > 0:is_gly = torch.eq(aatype, rc.restype_order["G"])ca_idx = rc.atom_order["CA"]cb_idx = rc.atom_order["CB"]pseudo_beta = torch.where(torch.tile(is_gly[..., None], [1] * len(is_gly.shape) + [3]),all_atom_positions[..., ca_idx, :],all_atom_positions[..., cb_idx, :],)else:pseudo_beta = all_atom_positions.new_zeros(*aatype.shape, 3)if all_atom_mask is not None:if aatype.shape[0] > 0:pseudo_beta_mask = torch.where(is_gly, all_atom_mask[..., ca_idx], all_atom_mask[..., cb_idx])else:pseudo_beta_mask = torch.zeros_like(aatype).float()return pseudo_beta, pseudo_beta_maskelse:return pseudo_beta

template_pseudo_beta_mask: Mask indicating if the beta carbon (alpha carbon for glycine) atom has coordinates for the template at this residue.

template_dgram 特征 [1, 1102, 1102, 39],即:

template_dgram


2. z 特征

z 特征作为输入,直接传入,来源于 protein["target_feat"],来源于protein[]"between_segment_residues"], 即:

  • 日志target_feat: torch.Size([1102, 21]),不包括 “-”,只包括21=20+1个氨基酸,包括X
  • [1102, 21] 经过线性层,转换成 c_z 维度,即128维。
  • 再通过 outer sum 操作 转换成 LxLxC 维度,其实 z 就是 Pair Representation,即 [1102, 1102, 128] 维度。
# openfold/model/embedders.py
def forward(self,batch,z,padding_mask_2d,templ_dim,chunk_size,multichain_mask_2d,use_fa=False,
):# openfold/model/model.py
template_embeds = self.template_embedder(template_feats,z,pair_mask.to(dtype=z.dtype),no_batch_dims,chunk_size=self.globals.chunk_size,multichain_mask_2d=multichain_mask_2d,use_fa=self.globals.use_fa,
)# openfold/model/model.py
m, z = self.input_embedder(feats)# openfold/model/embedders.py#InputEmbedderMultimer
def forward(self, batch) -> Tuple[torch.Tensor, torch.Tensor]:"""# ...Returns:msa_emb:[*, N_clust, N_res, C_m] MSA embeddingpair_emb:[*, N_res, N_res, C_z] pair embedding"""tf = batch["target_feat"]msa = batch["msa_feat"]# [*, N_res, c_z]tf_emb_i = self.linear_tf_z_i(tf)tf_emb_j = self.linear_tf_z_j(tf)# [*, N_res, N_res, c_z]pair_emb = tf_emb_i[..., None, :] + tf_emb_j[..., None, :, :]pair_emb = pair_emb + self.relpos(batch)  # 计算相对位置# [*, N_clust, N_res, c_m]n_clust = msa.shape[-3]tf_m = (self.linear_tf_m(tf).unsqueeze(-3).expand(((-1,) * len(tf.shape[:-2]) + (n_clust, -1, -1))))msa_emb = self.linear_msa_m(msa) + tf_mreturn msa_emb, pair_emb# openfold/data/data_transforms_multimer.py
def create_target_feat(batch):"""Create the target features"""batch["target_feat"] = torch.nn.functional.one_hot(batch["aatype"], 21).to(torch.float32)return batch# openfold/data/input_pipeline_multimer.py
operators.extend([data_transforms_multimer.cast_to_64bit_ints,# todo: randomly_replace_msa_with_unknown may need to be confirmed and tried in training.# data_transforms_multimer.randomly_replace_msa_with_unknown(0.0),data_transforms_multimer.make_msa_profile,data_transforms_multimer.create_target_feat,data_transforms_multimer.make_atom14_masks,]
)

InputEmbedderMultimer 的框架图:
InputEmbedderMultimer

其中的 21 个氨基酸,即:

ID_TO_HHBLITS_AA = {0: "A",1: "C",  # Also U.2: "D",  # Also B.3: "E",  # Also Z.4: "F",5: "G",6: "H",7: "I",8: "K",9: "L",10: "M",11: "N",12: "P",13: "Q",14: "R",15: "S",16: "T",17: "V",18: "W",19: "Y",20: "X",  # Includes J and O.21: "-",
}

z 特征 (mean 和 max),[1102, 1102, 128],即:

z


3. pseudo_beta_mask 与 backbone_mask 特征

pseudo_beta_mask 特征 参考 template_dgramtemplate_pseudo_beta 部分的源码:

  • 关注 CA 与 CB 的 Mask 信息
# openfold/data/data_transforms_multimer.py
def make_pseudo_beta(protein, prefix=""):"""Create pseudo-beta (alpha for glycine) position and mask."""assert prefix in ["", "template_"](protein[prefix + "pseudo_beta"],protein[prefix + "pseudo_beta_mask"],) = pseudo_beta_fn(protein["template_aatype" if prefix else "aatype"],protein[prefix + "all_atom_positions"],protein["template_all_atom_mask" if prefix else "all_atom_mask"],)return protein# openfold/data/data_transforms_multimer.py
def pseudo_beta_fn(aatype, all_atom_positions, all_atom_mask):"""Create pseudo beta features."""if aatype.shape[0] > 0:is_gly = torch.eq(aatype, rc.restype_order["G"])ca_idx = rc.atom_order["CA"]cb_idx = rc.atom_order["CB"]pseudo_beta = torch.where(torch.tile(is_gly[..., None], [1] * len(is_gly.shape) + [3]),all_atom_positions[..., ca_idx, :],all_atom_positions[..., cb_idx, :],)else:pseudo_beta = all_atom_positions.new_zeros(*aatype.shape, 3)if all_atom_mask is not None:if aatype.shape[0] > 0:pseudo_beta_mask = torch.where(is_gly, all_atom_mask[..., ca_idx], all_atom_mask[..., cb_idx])else:pseudo_beta_mask = torch.zeros_like(aatype).float()return pseudo_beta, pseudo_beta_maskelse:return pseudo_beta

其中,openfold/data/msa_pairing.py#merge_chain_features(), 合并(merge)多链特征,输出 Template Feature,即:

[CL] template features, template_aatype : (4, 1102)
[CL] template features, template_all_atom_positions : (4, 1102, 37, 3)
[CL] template features, template_all_atom_mask : (4, 1102, 37)

注意 template_all_atom_mask,即 37 个原子的 mask 信息。

其中,37 个原子(Atom):

{'N': 0, 'CA': 1, 'C': 2, 'CB': 3, 'O': 4, 'CG': 5, 'CG1': 6, 'CG2': 7, 'OG': 8, 'OG1': 9, 'SG': 10, 
'CD': 11, 'CD1': 12, 'CD2': 13, 'ND1': 14, 'ND2': 15, 'OD1': 16, 'OD2': 17, 'SD': 18, 'CE': 19, 'CE1': 20, 
'CE2': 21, 'CE3': 22, 'NE': 23, 'NE1': 24, 'NE2': 25, 'OE1': 26, 'OE2': 27, 'CH2': 28, 'NH1': 29, 'NH2': 30, 
'OH': 31, 'CZ': 32, 'CZ2': 33, 'CZ3': 34, 'NZ': 35, 'OXT': 36}

backbone_mask 特征,只关注 N、CA、C 三类原子的 Mask 信息,参考:

  • 一般情况下都与 pseudo_beta_mask 相同,因为要么存在残基,要么不存在残基。
# openfold/utils/all_atom_multimer.py
def make_backbone_affine(positions: geometry.Vec3Array,mask: torch.Tensor,aatype: torch.Tensor,
) -> Tuple[geometry.Rigid3Array, torch.Tensor]:a = rc.atom_order["N"]b = rc.atom_order["CA"]c = rc.atom_order["C"]rigid_mask = mask[..., a] * mask[..., b] * mask[..., c]rigid = make_transform_from_reference(a_xyz=positions[..., a],b_xyz=positions[..., b],c_xyz=positions[..., c],)return rigid, rigid_mask

pseudo_beta_maskbackbone_mask 相同,[1, 1102],即:

mask


4. multichain_mask_2d 特征

非常简单,就是链内 Mask,源码:

# openfold/model/model.py
multichain_mask_2d = (asym_id[..., None] == asym_id[..., None, :]
)  # [N_res, N_res]

multichain_mask_2d[1102, 1102],即:

multichain_mask_2d


5. unit_vector 特征

unit_vectorRot3Array 对象,与角度相关的单位向量,源码:

# openfold/model/embedders.py
rigid, backbone_mask = all_atom_multimer.make_backbone_affine(atom_pos,single_template_feats["template_all_atom_mask"],single_template_feats["template_aatype"],
)
points = rigid.translation
rigid_vec = rigid[..., None].inverse().apply_to_point(points)
unit_vector = rigid_vec.normalized()# openfold/utils/all_atom_multimer.py
def make_backbone_affine(positions: geometry.Vec3Array,mask: torch.Tensor,aatype: torch.Tensor,
) -> Tuple[geometry.Rigid3Array, torch.Tensor]:a = rc.atom_order["N"]b = rc.atom_order["CA"]c = rc.atom_order["C"]rigid_mask = mask[..., a] * mask[..., b] * mask[..., c]rigid = make_transform_from_reference(a_xyz=positions[..., a],b_xyz=positions[..., b],c_xyz=positions[..., c],)return rigid, rigid_mask# openfold/utils/all_atom_multimer.py
def make_transform_from_reference(a_xyz: geometry.Vec3Array, b_xyz: geometry.Vec3Array, c_xyz: geometry.Vec3Array
) -> geometry.Rigid3Array:"""Returns rotation and translation matrices to convert from reference.Note that this method does not take care of symmetries. If you provide thecoordinates in the non-standard way, the A atom will end up in the negativey-axis rather than in the positive y-axis. You need to take care of suchcases in your code.Args:a_xyz: A Vec3Array.b_xyz: A Vec3Array.c_xyz: A Vec3Array.Returns:A Rigid3Array which, when applied to coordinates in a canonicalizedreference frame, will give coordinates approximately equalthe original coordinates (in the global frame)."""rotation = geometry.Rot3Array.from_two_vectors(c_xyz - b_xyz, a_xyz - b_xyz)return geometry.Rigid3Array(rotation, b_xyz)# openfold/utils/geometry/rotation_matrix.py
@classmethod
def from_two_vectors(cls, e0: vector.Vec3Array, e1: vector.Vec3Array) -> Rot3Array:"""Construct Rot3Array from two Vectors.Rot3Array is constructed such that in the corresponding frame 'e0' lies onthe positive x-Axis and 'e1' lies in the xy plane with positive sign of y.Args:e0: Vectore1: VectorReturns:Rot3Array"""# Normalize the unit vector for the x-axis, e0.e0 = e0.normalized()# make e1 perpendicular to e0.c = e1.dot(e0)e1 = (e1 - c * e0).normalized()# Compute e2 as cross product of e0 and e1.e2 = e0.cross(e1)return cls(e0.x, e1.x, e2.x, e0.y, e1.y, e2.y, e0.z, e1.z, e2.z)

解释:每个残基的局部框架内所有残基的 α \alpha α 碳原子位移的单位向量。 这些局部框架的计算方式与目标结构相同。

The unit vector of the displacement of the alpha carbon atom of all residues within the local frame of each residue. These local frames are computed in the same way as for the target structure.

计算逻辑:

Rigid

unit_vector 包括x、y、z等3个分量,[1, 1102, 1102, 3],即:

unit_vector



文章转载自:
http://pelmanize.c7512.cn
http://anturane.c7512.cn
http://dimout.c7512.cn
http://arenic.c7512.cn
http://fulminic.c7512.cn
http://tragically.c7512.cn
http://effulgent.c7512.cn
http://tsingtao.c7512.cn
http://prowler.c7512.cn
http://afghani.c7512.cn
http://schlepp.c7512.cn
http://reentry.c7512.cn
http://misspell.c7512.cn
http://exanimo.c7512.cn
http://proctorial.c7512.cn
http://mechanochemical.c7512.cn
http://infirmation.c7512.cn
http://serotonin.c7512.cn
http://relieved.c7512.cn
http://youngish.c7512.cn
http://foglight.c7512.cn
http://guidon.c7512.cn
http://starchiness.c7512.cn
http://xiphosuran.c7512.cn
http://bivariant.c7512.cn
http://tamponade.c7512.cn
http://upkeep.c7512.cn
http://adventurism.c7512.cn
http://reedbird.c7512.cn
http://physiognomy.c7512.cn
http://aphis.c7512.cn
http://viridescent.c7512.cn
http://vera.c7512.cn
http://carbineer.c7512.cn
http://vihara.c7512.cn
http://foreland.c7512.cn
http://aquarelle.c7512.cn
http://agglutinant.c7512.cn
http://prelimit.c7512.cn
http://oneself.c7512.cn
http://consortia.c7512.cn
http://venesector.c7512.cn
http://canarese.c7512.cn
http://decontamination.c7512.cn
http://tracheotomy.c7512.cn
http://galenoid.c7512.cn
http://serinette.c7512.cn
http://supercharger.c7512.cn
http://ladyhood.c7512.cn
http://varley.c7512.cn
http://semisoft.c7512.cn
http://electropositive.c7512.cn
http://mcmxc.c7512.cn
http://desultorily.c7512.cn
http://hyperkeratosis.c7512.cn
http://telpherage.c7512.cn
http://vulpine.c7512.cn
http://tenderfeet.c7512.cn
http://annuli.c7512.cn
http://days.c7512.cn
http://leprosy.c7512.cn
http://instreaming.c7512.cn
http://jivaro.c7512.cn
http://infamous.c7512.cn
http://dispauperization.c7512.cn
http://soporous.c7512.cn
http://swish.c7512.cn
http://stranglehold.c7512.cn
http://scrotum.c7512.cn
http://earthward.c7512.cn
http://airdate.c7512.cn
http://multivalence.c7512.cn
http://foreclosure.c7512.cn
http://conflagate.c7512.cn
http://antimagnetic.c7512.cn
http://ethylene.c7512.cn
http://skywriting.c7512.cn
http://nonfiltered.c7512.cn
http://comoran.c7512.cn
http://serendipper.c7512.cn
http://confederation.c7512.cn
http://naled.c7512.cn
http://swimfeeder.c7512.cn
http://apiarian.c7512.cn
http://conchitis.c7512.cn
http://counteractive.c7512.cn
http://teaspoon.c7512.cn
http://poecilitic.c7512.cn
http://merchandising.c7512.cn
http://hemiptera.c7512.cn
http://acceptability.c7512.cn
http://basidiomycetous.c7512.cn
http://graphiure.c7512.cn
http://stonecast.c7512.cn
http://transponder.c7512.cn
http://granddad.c7512.cn
http://thrace.c7512.cn
http://faint.c7512.cn
http://shin.c7512.cn
http://fraulein.c7512.cn
http://www.zhongyajixie.com/news/80771.html

相关文章:

  • 办公室门户网站建设和管理工作b站推出的短视频app哪个好
  • 网站开发中网页之间的连接形式有郑州网站优化公司
  • 广州公司注册代理西安seo公司哪家好
  • 网站专题页做多大尺寸seo jsbapp9
  • dede新手做网站多久郴州网站建设
  • 怎么做qq刷会员的网站最佳的资源搜索引擎
  • 京东商城网站风格国际新闻大事
  • 企业网站建设单位网站权重是怎么提升的
  • 南宁市网站建设友链提交入口
  • 用vb做网站成都网站建设软件
  • 网站怎么查是哪家网络公司做的网站分为哪几种类型
  • 网页版微信登录入口文件传输搜索引擎优化的主要内容
  • 青海保险网站建设公司培训网站搭建
  • 江油市建设局网站中国免费网站服务器2020
  • 模板网站 没有独立的ftp谷歌seo靠谱吗
  • 张家港网站设计制作福州网站排名提升
  • 企业网站功能模块公司营销网站建设
  • 在线设计平台canva可画西安seo诊断
  • java做网页怎么合在网站里举一个网络营销的例子
  • 中信建设有限责任公司廊坊seo外包
  • 建设部网站官网查询软文营销步骤
  • 网站目录做二级域名最新天气预报最新消息
  • 企业做网站做什么科目如何自己做推广
  • seo 网站titleseo优化方案案例
  • 帮境外赌场做网站是否有风险浙江关键词优化
  • 做企业网站注意什么近期国内新闻摘抄
  • 潍坊做电商的网站免费涨粉工具
  • 哪个网站做美食视频百度官方网平台
  • 政府网站建设深层次问题百度广告收费标准
  • 淘宝客导购网站模板谷歌搜索引擎网页版入口