当前位置: 首页 > news >正文

长春网站建设方案详细市场推广外包团队

长春网站建设方案详细,市场推广外包团队,用vs2012做简单网站,域名已有服务器也有怎么做网站大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。…

  大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的知识进行总结与归纳,不仅形成深入且独到的理解,而且能够帮助新手快速入门。今天给大家带来的文章是LoRA微调的技巧和方法,希望能对同学们有所帮助。

文章目录

  • 1. 定义
  • 2. LoRA微调参数
  • 3. 书籍推荐
    • 3.1 《从零开始大模型开发与微调:基于PyTorch与ChatGLM》
    • 3.2 内容介绍
    • 3.3 适合人群
    • 3.4 粉丝福利
    • 3.5 自主购买

1. 定义

  对于大语言模型而言,全量微调的代价是比较高的,需要数百GB的显存来训练具有几B参数的模型。为了解决资源不足的问题,大佬们提出了一种新的方法:低秩适应(Low-Rank Adaptation)。与微调OPT-175B相比,LoRA可以将可训练参数数量减少一万倍,并且GPU显存降低3倍以上。详细内容可参考论文《LoRA: Low-Rank Adaptation of Large Language Models》和HuggingFace PEFT博客文章《Parameter-Efficient Fine-Tuning of Billion-Scale Models on Low-Resource Hardware》。

在这里插入图片描述

  LoRA是一种常用的高效微调的训练方法(PEFT),旨在加快大型语言模型的训练过程,同时减少显存的使用。通过引入更新矩阵对现有权重进行操作,LoRA专注于训练新添加的权重。LoRA方法具有以下的几大优点:

  • 保留预训练权重:LoRA保持先前训练权重的冻结状态,最小化了灾难性遗忘的风险。这确保了模型在适应新数据时保留其现有知识。
  • 已训练权重的可移植性:与原始模型相比,LoRA中使用的秩分解矩阵参数明显较少。这个特点使得经过训练的LoRA权重可以轻松地转移到其他环境中,使它们非常易于移植。
  • 与注意力层集成:通常将LoRA矩阵合并到原始模型的注意力层中。此外,自适应缩放参数允许控制模型对新培训数据调整程度。
  • 显存效率:LoRA改进后具有更高效利用显存资源能力,在不到本机微调所需计算量3倍情况下运行微调任务成为可能。

  对于普通用户来说,依然很难满足1/3的显存需求。幸运的是,大佬们又发明了一种新的LoRA训练方法:量化低秩适应(QLoRA)。它利用bitsandbytes库对语言模型进行即时和近无损量化,并将其应用于LoRA训练过程中。这导致显存需求急剧下降,可以在2个3090卡上微调70B的模型。相比之下,要微调同等规模的模型通常需要超过16个A100-80GB GPU,对应的成本将非常巨大。详细内容可参考论文QLoRA: Efficient Finetuning of Quantized LLMs。

在这里插入图片描述

2. LoRA微调参数

  首先最关键的参数为:低秩矩阵对应的秩(rank)。为了减少显存,对权重矩阵应用了低秩分解。在LoRA论文中,建议rank设置不小于8(r = 8)。请记住,较高的rank会导致更好的结果,但需要更多的显存。数据集的数量和复杂度越高,所需的rank就越高。

  除此之外,另外需要设置的参数即为LoRA微调对应的网络层。最基本的训练对象是查询向量(例如q_proj)和值向量(例如v_proj)投影矩阵。不同模型对应的网络层如下所示:

ModelModel sizeDefault module
Baichuan7B/13BW_packbaichuan
Baichuan227B/13BW_packbaichuan2
BLOOM560M/1.1B/1.7B/3B/7.1B/176Bquery_key_value
BLOOMZ560M/1.1B/1.7B/3B/7.1B/176Bquery_key_value
ChatGLM36Bquery_key_value
Falcon7B/40B/180Bquery_key_value
InternLM7B/20Bq_proj,v_proj
LLaMA7B/13B/33B/65Bq_proj,v_proj
LLaMA-27B/13B/70Bq_proj,v_proj
Mistral7Bq_proj,v_proj
Mixtral8x7Bq_proj,v_proj
Phi1.5/21.3B/2.7BWqkv-Q
Qwen1.8B/7B/14B/72Bc_attn
XVERSE7B/13B/65Bq_proj,v_proj
Yi6B/34Bq_proj,v_proj

3. 书籍推荐

  大模型是深度学习自然语言处理皇冠上的一颗明珠,也是当前AI和NLP研究与产业中最重要的方向之一。本书使用PyTorch 2.0作为学习大模型的基本框架,以ChatGLM为例详细讲解大模型的基本理论、算法、程序实现、应用实战以及微调技术,为读者揭示大模型开发技术。

3.1 《从零开始大模型开发与微调:基于PyTorch与ChatGLM》

在这里插入图片描述

3.2 内容介绍

  大模型是深度学习自然语言处理皇冠上的一颗明珠,也是当前AI和NLP研究与产业中最重要的方向之一。本书使用PyTorch 2.0作为学习大模型的基本框架,以ChatGLM为例详细讲解大模型的基本理论、算法、程序实现、应用实战以及微调技术,为读者揭示大模型开发技术。本书配套示例源代码、PPT课件。

  《从零开始大模型开发与微调:基于PyTorch与ChatGLM》共18章,内容包括人工智能与大模型、PyTorch 2.0深度学习环境搭建、从零开始学习PyTorch 2.0、深度学习基础算法详解、基于PyTorch卷积层的MNIST分类实战、PyTorch数据处理与模型展示、ResNet实战、有趣的词嵌入、基于PyTorch循环神经网络的中文情感分类实战、自然语言处理的编码器、预训练模型BERT、自然语言处理的解码器、强化学习实战、只具有解码器的GPT-2模型、实战训练自己的ChatGPT、开源大模型ChatGLM使用详解、ChatGLM高级定制化应用实战、对ChatGLM进行高级微调。

from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm3-6b", trust_remote_code=True)
model = AutoModel.from_pretrained("THUDM/chatglm3-6b", trust_remote_code=True, device='cuda')
model = model.eval()
response, history = model.chat(tokenizer, "你好", history=[])
print(response)

3.3 适合人群

  《从零开始大模型开发与微调:基于PyTorch与ChatGLM》适合PyTorch深度学习初学者、大模型开发初学者、大模型开发人员学习,也适合高等院校人工智能、智能科学与技术、数据科学与大数据技术、计算机科学与技术等专业的师生作为教学参考书。

3.4 粉丝福利

  • 本次送书两本
  • 活动时间:截止到2023-12-27 9:00
  • 参与方式:关注博主、并在此文章下面点赞、收藏并任意评论。
  • 一本送给所有粉丝抽奖,另外一本送给购买专栏的同学们,购买专栏并且没有送过书的同学们可私信联系,先到先得,仅限一本

3.5 自主购买

  小伙伴也可以访问链接进行自主购买哦~

  直达京东购买链接🔗:《从零开始大模型开发与微调:基于PyTorch与ChatGLM》

http://www.zhongyajixie.com/news/38096.html

相关文章:

  • php做网站答辩问题app网站推广平台
  • 网站建设毕业设计模板国外广告联盟平台
  • 河南省做网站的企业论坛推广怎么做
  • 做虚拟币网站需要什么手续贵阳搜索引擎排名推广
  • 动态网站建设 作业关于友谊的连接
  • 微网站制作价格网站seo课设
  • 南昌专业网站建设影视网站怎么优化关键词排名
  • 绿色学校网站模板seo顾问赚钱吗
  • 网站首页设计草图seo优化教学视频
  • 怎么删除网站的死链建站平台在线提交功能
  • 万网归一关键词优化报价推荐
  • 中国建设银行驻莫斯科网站by72777最新域名查询
  • 学校招办网站怎么做百度网站官网入口网址
  • 网站建设实训心得及收获培训学校招生方案
  • 钟楼做网站如何在百度上添加店铺的位置
  • 外贸网站建设是什么意思自己如何制作网页
  • seo自己做网站吗网络软文营销案例3篇
  • 安徽网站推广营销设计网络推广培训课程内容
  • 公司做网站需要什么网站首页快速收录
  • 怎么建设免费网站沈阳seo排名收费
  • 本土广告公司北京快速优化排名
  • 大莲网站建设公司江苏网络推广公司
  • 汕头网页设计上海网站排名优化公司
  • 宝塔面板上传自己做的网站安卓优化大师历史版本
  • wordpress meta 导出深圳网站营销seo电话
  • 网站建设属于什么费用谷歌google play官网
  • html做的旅游网站营销网站建设服务
  • 消防做设计有什么网站怎么在百度打广告
  • 石狮网站建设seo的优化技巧有哪些
  • 做酒店管理网站的作用博客程序seo