当前位置: 首页 > news >正文

有哪些优秀的个人网站企业网络的组网方案

有哪些优秀的个人网站,企业网络的组网方案,做视频网站怎么备案,wordpress cpu占用高A*算法与IDA*算法详细解析 1. A*算法 核心思想: A*算法是一种启发式搜索算法,结合了Dijkstra算法的最短路径保证和贪心最佳优先搜索的高效导向性。其核心是评估函数 ( f(n) g(n) h(n) ),其中: ( g(n) ): 从起点到当前节点 ( …

A*算法与IDA*算法详细解析

1. A*算法

核心思想
A*算法是一种启发式搜索算法,结合了Dijkstra算法的最短路径保证和贪心最佳优先搜索的高效导向性。其核心是评估函数 ( f(n) = g(n) + h(n) ),其中:

  • ( g(n) ): 从起点到当前节点 ( n ) 的实际代价。
  • ( h(n) ): 当前节点 ( n ) 到目标节点的启发式估计代价(需满足可采纳性,即不高估实际代价)。

算法步骤

  1. 初始化:将起点加入优先队列(Open List),记录 ( g ) 值和 ( f ) 值。
  2. 循环扩展
    • 取出 Open List 中 ( f(n) ) 最小的节点 ( n )。
    • 若 ( n ) 是目标节点,回溯路径并结束。
    • 将 ( n ) 移入 Closed List(已处理列表)。
    • 遍历 ( n ) 的邻居 ( m ):
      • 计算临时 ( g_{temp} = g(n) + \text{cost}(n, m) )。
      • 若 ( m ) 不在 Open List 或 Closed List,或 ( g_{temp} < g(m) ),更新 ( m ) 的父节点为 ( n ),并重新计算 ( f(m) ),将 ( m ) 加入 Open List。
  3. 终止条件:Open List 为空时,表示无解。

关键特性

  • 可采纳性:启发函数 ( h(n) ) 必须满足 ( h(n) \leq h^*(n) )(实际代价),确保最优解。
  • 一致性(单调性):若 ( h(n) \leq \text{cost}(n, m) + h(m) )(对任意边 ( n \to m )),则 A* 无需重复处理节点(Closed List 不再更新)。

优缺点

  • 优点:高效、保证最优解(若 ( h(n) ) 可采纳)。
  • 缺点:内存消耗高(需维护 Open/Closed List)。

应用场景

  • 游戏AI路径规划(如RTS游戏单位移动)。
  • 地图导航(如GPS路线计算)。

代码

import heapq# 定义节点类
class Node:def __init__(self, x, y, g=float('inf'), h=float('inf'), parent=None):self.x = xself.y = yself.g = gself.h = hself.f = g + hself.parent = parentdef __lt__(self, other):return self.f < other.f# 启发函数:曼哈顿距离
def heuristic(a, b):return abs(a[0] - b[0]) + abs(a[1] - b[1])# A* 算法实现
def a_star(grid, start, goal):rows, cols = len(grid), len(grid[0])open_list = []closed_set = set()start_node = Node(start[0], start[1], 0, heuristic(start, goal))heapq.heappush(open_list, start_node)while open_list:current = heapq.heappop(open_list)if (current.x, current.y) == goal:path = []while current:path.append((current.x, current.y))current = current.parentreturn path[::-1]closed_set.add((current.x, current.y))neighbors = [(current.x + dx, current.y + dy) for dx, dy in [(-1, 0), (1, 0), (0, -1), (0, 1)]if 0 <= current.x + dx < rows and 0 <= current.y + dy < cols and grid[current.x + dx][current.y + dy] == 0]for neighbor in neighbors:if neighbor in closed_set:continuetentative_g = current.g + 1neighbor_node = Node(neighbor[0], neighbor[1])if tentative_g < neighbor_node.g:neighbor_node.parent = currentneighbor_node.g = tentative_gneighbor_node.h = heuristic(neighbor, goal)neighbor_node.f = neighbor_node.g + neighbor_node.hheapq.heappush(open_list, neighbor_node)return None# 示例使用
grid = [[0, 0, 0, 0],[0, 1, 1, 0],[0, 1, 0, 0],[0, 0, 0, 0]
]
start = (0, 0)
goal = (3, 3)
path = a_star(grid, start, goal)
print("A* 算法找到的路径:", path)

2. IDA*算法(Iterative Deepening A*

核心思想
将迭代加深(Iterative Deepening)与A*结合,通过逐步放宽的阈值进行深度优先搜索(DFS),每次搜索限制 ( f(n) ) 不超过当前阈值,避免内存爆炸。

算法步骤

  1. 初始化:阈值 ( \text{threshold} = f(\text{起点}) = h(\text{起点}) )。
  2. 深度优先搜索
    • 从起点出发,递归访问节点 ( n )。
    • 若 ( f(n) > \text{threshold} ),记录超限的最小 ( f ) 值作为下次阈值。
    • 若找到目标,返回路径。
  3. 迭代更新:若未找到目标,将阈值设为上一步记录的最小超限值,重新开始DFS。

关键特性

  • 每次迭代类似一次深度受限的DFS,但限制条件是 ( f(n) \leq \text{threshold} )。
  • 内存占用低(仅需存储递归栈)。

优缺点

  • 优点:内存效率极高(无Open/Closed List),适合状态空间大的问题。
  • 缺点:可能重复访问节点(需权衡启发式函数质量)。

应用场景

  • 解谜问题(如15数码、华容道)。
  • 内存受限环境下的路径搜索。

代码:

# 启发函数:曼哈顿距离
def heuristic_ida(a, b):return abs(a[0] - b[0]) + abs(a[1] - b[1])# 递归深度优先搜索
def dfs(grid, node, goal, limit, path):f = node[2] + heuristic_ida((node[0], node[1]), goal)if f > limit:return fif (node[0], node[1]) == goal:path.append((node[0], node[1]))return Truemin_val = float('inf')rows, cols = len(grid), len(grid[0])neighbors = [(node[0] + dx, node[1] + dy, node[2] + 1) for dx, dy in [(-1, 0), (1, 0), (0, -1), (0, 1)]if 0 <= node[0] + dx < rows and 0 <= node[1] + dy < cols and grid[node[0] + dx][node[1] + dy] == 0]for neighbor in neighbors:result = dfs(grid, neighbor, goal, limit, path)if result is True:path.append((node[0], node[1]))return Trueif result < min_val:min_val = resultreturn min_val# IDA* 算法实现
def ida_star(grid, start, goal):limit = heuristic_ida(start, goal)while True:path = []result = dfs(grid, (*start, 0), goal, limit, path)if result is True:return path[::-1]if result == float('inf'):return Nonelimit = result# 示例使用
grid = [[0, 0, 0, 0],[0, 1, 1, 0],[0, 1, 0, 0],[0, 0, 0, 0]
]
start = (0, 0)
goal = (3, 3)
path = ida_star(grid, start, goal)
print("IDA* 算法找到的路径:", path)

3. A* vs IDA*:对比与选择
特性A*IDA*
内存占用高(需维护Open/Closed List)极低(仅递归栈)
时间复杂度通常更低(无重复搜索)可能更高(重复访问节点)
启发式要求可采纳性(必须)可采纳性(必须)
适用场景内存充足、需快速求解的问题内存受限、状态空间爆炸的问题
实现复杂度中等(需优先队列)简单(递归DFS)

4. 示例与启发式函数
  • 网格路径规划
    • 曼哈顿距离:( h(n) = |x_n - x_{goal}| + |y_n - y_{goal}| )(可采纳)。
  • 15数码问题
    • 错位方块数:不在目标位置的方块数(可采纳但较弱)。
    • 曼哈顿距离和:所有方块到目标位置的曼哈顿距离之和(更强启发式)。

5. 总结
  • 选择A*:需要快速求解且内存充足时优先使用。
  • 选择IDA*:面对超大状态空间或严格内存限制时(如嵌入式系统)。

两者均依赖启发式函数的质量,设计优秀的 ( h(n) ) 可大幅提升性能。实际应用中,可结合问题特点进行优化(如双向搜索、剪枝策略)。

http://www.zhongyajixie.com/news/3286.html

相关文章:

  • 网站建设项目执行进度表新品上市怎么做宣传推广
  • 溧阳网站建设公司上海seo搜索优化
  • 黔江区建设委员会网站打不开网站推广方式
  • 新疆建设网站搜索关键词分析
  • wordpress网站导航子菜单seo网站推广批发
  • 早教网站建设方案中山网站seo优化
  • 建设网站价格seo优化服务是什么
  • 泉州住房和城乡建设部网站深圳网络营销推广专员
  • 网站建设提成工业和信息化部
  • 公司做网站收费杭州seo首页优化软件
  • 上传了网站程序后百度关键词统计
  • 合合肥网站建设深圳网站seo公司
  • wordpress网站破解百度问答优化
  • 乌克兰服务器网站优化哪个公司好
  • 广东企业网站备案推广优化工具
  • 男女做那个的视频网站网站推广策划思路
  • 自定义投票网站怎么做青岛seo整站优化招商电话
  • 宝鸡企业网站建设企业网站制作步骤
  • 怎么做属于自己的网站营销和运营的区别是什么
  • 淘宝联盟如何做网站资源平台
  • 做跨境电商网站报价seo综合查询是什么意思
  • 免费永久云服务器seo做什么网站赚钱
  • 手机网站建设规划书互联网优化是什么意思
  • 织梦网站会员上传图片百度知道网址
  • 企业网站建设怎么做网络营销主要特点有哪些
  • 网站关键词快速排名百度关键词怎么做
  • 织梦后台搭建网站并调用标签建设百度题库
  • 重庆自助建站模板制作网页多少钱
  • 企业网站怎么形成二维码营销软件培训
  • 网站开发运行环境有哪些网络运营推广是做什么的