当前位置: 首页 > news >正文

使用html做网站的网页培训网络营销机构

使用html做网站的网页,培训网络营销机构,wordpress省市区三级,泰安网上房地产1--前言 以论文《High-Resolution Image Synthesis with Latent Diffusion Models》 开源的项目为例,剖析Stable Diffusion经典组成部分,巩固学习加深印象。 2--UNetModel 一个可以debug的小demo:SD_UNet​​​​​​​ 以文生图为例&#…

1--前言

        以论文《High-Resolution Image Synthesis with Latent Diffusion Models》  开源的项目为例,剖析Stable Diffusion经典组成部分,巩固学习加深印象。

2--UNetModel

一个可以debug的小demo:SD_UNet​​​​​​​

        以文生图为例,剖析UNetModel核心组成模块。

2-1--Forward总揽

提供的文生图Demo中,实际传入的参数只有x、timesteps和context三个,其中:

        x 表示随机初始化的噪声Tensor(shape: [B*2, 4, 64, 64],*2表示使用Classifier-Free Diffusion Guidance)。

        timesteps 表示去噪过程中每一轮传入的timestep(shape: [B*2])。

        context表示经过CLIP编码后对应的文本Prompt(shape: [B*2, 77, 768])。

    def forward(self, x, timesteps=None, context=None, y=None,**kwargs):"""Apply the model to an input batch.:param x: an [N x C x ...] Tensor of inputs.:param timesteps: a 1-D batch of timesteps.:param context: conditioning plugged in via crossattn:param y: an [N] Tensor of labels, if class-conditional.:return: an [N x C x ...] Tensor of outputs."""assert (y is not None) == (self.num_classes is not None), "must specify y if and only if the model is class-conditional"hs = []t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False) # Create sinusoidal timestep embeddings.emb = self.time_embed(t_emb) # MLPif self.num_classes is not None:assert y.shape == (x.shape[0],)emb = emb + self.label_emb(y)h = x.type(self.dtype)for module in self.input_blocks:h = module(h, emb, context)hs.append(h)h = self.middle_block(h, emb, context)for module in self.output_blocks:h = th.cat([h, hs.pop()], dim=1)h = module(h, emb, context)h = h.type(x.dtype)if self.predict_codebook_ids:return self.id_predictor(h)else:return self.out(h)

2-2--timestep embedding生成

        使用函数 timestep_embedding() 和 self.time_embed() 对传入的timestep进行位置编码,生成sinusoidal timestep embeddings。

        其中 timestep_embedding() 函数定义如下,而self.time_embed()是一个MLP函数。

def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):"""Create sinusoidal timestep embeddings.:param timesteps: a 1-D Tensor of N indices, one per batch element.These may be fractional.:param dim: the dimension of the output.:param max_period: controls the minimum frequency of the embeddings.:return: an [N x dim] Tensor of positional embeddings."""if not repeat_only:half = dim // 2freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(device=timesteps.device)args = timesteps[:, None].float() * freqs[None]embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)if dim % 2:embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)else:embedding = repeat(timesteps, 'b -> b d', d=dim)return embedding
self.time_embed = nn.Sequential(linear(model_channels, time_embed_dim),nn.SiLU(),linear(time_embed_dim, time_embed_dim),
)

2-3--self.input_blocks下采样

        在 Forward() 中,使用 self.input_blocks 将输入噪声进行分辨率下采样,经过下采样具体维度变化为:[B*2, 4, 64, 64] > [B*2, 1280, 8, 8];

        下采样模块共有12个 module,其组成如下:

ModuleList((0): TimestepEmbedSequential((0): Conv2d(4, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)))(1-2): 2 x TimestepEmbedSequential((0): ResBlock((in_layers): Sequential((0): GroupNorm32(32, 320, eps=1e-05, affine=True)(1): SiLU()(2): Conv2d(320, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)))(h_upd): Identity()(x_upd): Identity()(emb_layers): Sequential((0): SiLU()(1): Linear(in_features=1280, out_features=320, bias=True))(out_layers): Sequential((0): GroupNorm32(32, 320, eps=1e-05, affine=True)(1): SiLU()(2): Dropout(p=0, inplace=False)(3): Conv2d(320, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)))(skip_connection): Identity())(1): SpatialTransformer((norm): GroupNorm(32, 320, eps=1e-06, affine=True)(proj_in): Conv2d(320, 320, kernel_size=(1, 1), stride=(1, 1))(transformer_blocks): ModuleList((0): BasicTransformerBlock((attn1): CrossAttention((to_q): Linear(in_features=320, out_features=320, bias=False)(to_k): Linear(in_features=320, out_features=320, bias=False)(to_v): Linear(in_features=320, out_features=320, bias=False)(to_out): Sequential((0): Linear(in_features=320, out_features=320, bias=True)(1): Dropout(p=0.0, inplace=False)))(ff): FeedForward((net): Sequential((0): GEGLU((proj): Linear(in_features=320, out_features=2560, bias=True))(1): Dropout(p=0.0, inplace=False)(2): Linear(in_features=1280, out_features=320, bias=True)))(attn2): CrossAttention((to_q): Linear(in_features=320, out_features=320, bias=False)(to_k): Linear(in_features=768, out_features=320, bias=False)(to_v): Linear(in_features=768, out_features=320, bias=False)(to_out): Sequential((0): Linear(in_features=320, out_features=320, bias=True)(1): Dropout(p=0.0, inplace=False)))(norm1): LayerNorm((320,), eps=1e-05, elementwise_affine=True)(norm2): LayerNorm((320,), eps=1e-05, elementwise_affine=True)(norm3): LayerNorm((320,), eps=1e-05, elementwise_affine=True)))(proj_out): Conv2d(320, 320, kernel_size=(1, 1), stride=(1, 1))))(3): TimestepEmbedSequential((0): Downsample((op): Conv2d(320, 320, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))))(4): TimestepEmbedSequential((0): ResBlock((in_layers): Sequential((0): GroupNorm32(32, 320, eps=1e-05, affine=True)(1): SiLU()(2): Conv2d(320, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)))(h_upd): Identity()(x_upd): Identity()(emb_layers): Sequential((0): SiLU()(1): Linear(in_features=1280, out_features=640, bias=True))(out_layers): Sequential((0): GroupNorm32(32, 640, eps=1e-05, affine=True)(1): SiLU()(2): Dropout(p=0, inplace=False)(3): Conv2d(640, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)))(skip_connection): Conv2d(320, 640, kernel_size=(1, 1), stride=(1, 1)))(1): SpatialTransformer((norm): GroupNorm(32, 640, eps=1e-06, affine=True)(proj_in): Conv2d(640, 640, kernel_size=(1, 1), stride=(1, 1))(transformer_blocks): ModuleList((0): BasicTransformerBlock((attn1): CrossAttention((to_q): Linear(in_features=640, out_features=640, bias=False)(to_k): Linear(in_features=640, out_features=640, bias=False)(to_v): Linear(in_features=640, out_features=640, bias=False)(to_out): Sequential((0): Linear(in_features=640, out_features=640, bias=True)(1): Dropout(p=0.0, inplace=False)))(ff): FeedForward((net): Sequential((0): GEGLU((proj): Linear(in_features=640, out_features=5120, bias=True))(1): Dropout(p=0.0, inplace=False)(2): Linear(in_features=2560, out_features=640, bias=True)))(attn2): CrossAttention((to_q): Linear(in_features=640, out_features=640, bias=False)(to_k): Linear(in_features=768, out_features=640, bias=False)(to_v): Linear(in_features=768, out_features=640, bias=False)(to_out): Sequential((0): Linear(in_features=640, out_features=640, bias=True)(1): Dropout(p=0.0, inplace=False)))(norm1): LayerNorm((640,), eps=1e-05, elementwise_affine=True)(norm2): LayerNorm((640,), eps=1e-05, elementwise_affine=True)(norm3): LayerNorm((640,), eps=1e-05, elementwise_affine=True)))(proj_out): Conv2d(640, 640, kernel_size=(1, 1), stride=(1, 1))))(5): TimestepEmbedSequential((0): ResBlock((in_layers): Sequential((0): GroupNorm32(32, 640, eps=1e-05, affine=True)(1): SiLU()(2): Conv2d(640, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)))(h_upd): Identity()(x_upd): Identity()(emb_layers): Sequential((0): SiLU()(1): Linear(in_features=1280, out_features=640, bias=True))(out_layers): Sequential((0): GroupNorm32(32, 640, eps=1e-05, affine=True)(1): SiLU()(2): Dropout(p=0, inplace=False)(3): Conv2d(640, 640, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)))(skip_connection): Identity())(1): SpatialTransformer((norm): GroupNorm(32, 640, eps=1e-06, affine=True)(proj_in): Conv2d(640, 640, kernel_size=(1, 1), stride=(1, 1))(transformer_blocks): ModuleList((0): BasicTransformerBlock((attn1): CrossAttention((to_q): Linear(in_features=640, out_features=640, bias=False)(to_k): Linear(in_features=640, out_features=640, bias=False)(to_v): Linear(in_features=640, out_features=640, bias=False)(to_out): Sequential((0): Linear(in_features=640, out_features=640, bias=True)(1): Dropout(p=0.0, inplace=False)))(ff): FeedForward((net): Sequential((0): GEGLU((proj): Linear(in_features=640, out_features=5120, bias=True))(1): Dropout(p=0.0, inplace=False)(2): Linear(in_features=2560, out_features=640, bias=True)))(attn2): CrossAttention((to_q): Linear(in_features=640, out_features=640, bias=False)(to_k): Linear(in_features=768, out_features=640, bias=False)(to_v): Linear(in_features=768, out_features=640, bias=False)(to_out): Sequential((0): Linear(in_features=640, out_features=640, bias=True)(1): Dropout(p=0.0, inplace=False)))(norm1): LayerNorm((640,), eps=1e-05, elementwise_affine=True)(norm2): LayerNorm((640,), eps=1e-05, elementwise_affine=True)(norm3): LayerNorm((640,), eps=1e-05, elementwise_affine=True)))(proj_out): Conv2d(640, 640, kernel_size=(1, 1), stride=(1, 1))))(6): TimestepEmbedSequential((0): Downsample((op): Conv2d(640, 640, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))))(7): TimestepEmbedSequential((0): ResBlock((in_layers): Sequential((0): GroupNorm32(32, 640, eps=1e-05, affine=True)(1): SiLU()(2): Conv2d(640, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)))(h_upd): Identity()(x_upd): Identity()(emb_layers): Sequential((0): SiLU()(1): Linear(in_features=1280, out_features=1280, bias=True))(out_layers): Sequential((0): GroupNorm32(32, 1280, eps=1e-05, affine=True)(1): SiLU()(2): Dropout(p=0, inplace=False)(3): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)))(skip_connection): Conv2d(640, 1280, kernel_size=(1, 1), stride=(1, 1)))(1): SpatialTransformer((norm): GroupNorm(32, 1280, eps=1e-06, affine=True)(proj_in): Conv2d(1280, 1280, kernel_size=(1, 1), stride=(1, 1))(transformer_blocks): ModuleList((0): BasicTransformerBlock((attn1): CrossAttention((to_q): Linear(in_features=1280, out_features=1280, bias=False)(to_k): Linear(in_features=1280, out_features=1280, bias=False)(to_v): Linear(in_features=1280, out_features=1280, bias=False)(to_out): Sequential((0): Linear(in_features=1280, out_features=1280, bias=True)(1): Dropout(p=0.0, inplace=False)))(ff): FeedForward((net): Sequential((0): GEGLU((proj): Linear(in_features=1280, out_features=10240, bias=True))(1): Dropout(p=0.0, inplace=False)(2): Linear(in_features=5120, out_features=1280, bias=True)))(attn2): CrossAttention((to_q): Linear(in_features=1280, out_features=1280, bias=False)(to_k): Linear(in_features=768, out_features=1280, bias=False)(to_v): Linear(in_features=768, out_features=1280, bias=False)(to_out): Sequential((0): Linear(in_features=1280, out_features=1280, bias=True)(1): Dropout(p=0.0, inplace=False)))(norm1): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)(norm2): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)(norm3): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)))(proj_out): Conv2d(1280, 1280, kernel_size=(1, 1), stride=(1, 1))))(8): TimestepEmbedSequential((0): ResBlock((in_layers): Sequential((0): GroupNorm32(32, 1280, eps=1e-05, affine=True)(1): SiLU()(2): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)))(h_upd): Identity()(x_upd): Identity()(emb_layers): Sequential((0): SiLU()(1): Linear(in_features=1280, out_features=1280, bias=True))(out_layers): Sequential((0): GroupNorm32(32, 1280, eps=1e-05, affine=True)(1): SiLU()(2): Dropout(p=0, inplace=False)(3): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)))(skip_connection): Identity())(1): SpatialTransformer((norm): GroupNorm(32, 1280, eps=1e-06, affine=True)(proj_in): Conv2d(1280, 1280, kernel_size=(1, 1), stride=(1, 1))(transformer_blocks): ModuleList((0): BasicTransformerBlock((attn1): CrossAttention((to_q): Linear(in_features=1280, out_features=1280, bias=False)(to_k): Linear(in_features=1280, out_features=1280, bias=False)(to_v): Linear(in_features=1280, out_features=1280, bias=False)(to_out): Sequential((0): Linear(in_features=1280, out_features=1280, bias=True)(1): Dropout(p=0.0, inplace=False)))(ff): FeedForward((net): Sequential((0): GEGLU((proj): Linear(in_features=1280, out_features=10240, bias=True))(1): Dropout(p=0.0, inplace=False)(2): Linear(in_features=5120, out_features=1280, bias=True)))(attn2): CrossAttention((to_q): Linear(in_features=1280, out_features=1280, bias=False)(to_k): Linear(in_features=768, out_features=1280, bias=False)(to_v): Linear(in_features=768, out_features=1280, bias=False)(to_out): Sequential((0): Linear(in_features=1280, out_features=1280, bias=True)(1): Dropout(p=0.0, inplace=False)))(norm1): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)(norm2): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)(norm3): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)))(proj_out): Conv2d(1280, 1280, kernel_size=(1, 1), stride=(1, 1))))(9): TimestepEmbedSequential((0): Downsample((op): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))))(10-11): 2 x TimestepEmbedSequential((0): ResBlock((in_layers): Sequential((0): GroupNorm32(32, 1280, eps=1e-05, affine=True)(1): SiLU()(2): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)))(h_upd): Identity()(x_upd): Identity()(emb_layers): Sequential((0): SiLU()(1): Linear(in_features=1280, out_features=1280, bias=True))(out_layers): Sequential((0): GroupNorm32(32, 1280, eps=1e-05, affine=True)(1): SiLU()(2): Dropout(p=0, inplace=False)(3): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)))(skip_connection): Identity()))
)

        12个 module 都使用了 TimestepEmbedSequential 类进行封装,根据不同的网络层,将输入噪声x与timestep embedding和prompt context进行运算。

class TimestepEmbedSequential(nn.Sequential, TimestepBlock):"""A sequential module that passes timestep embeddings to the children thatsupport it as an extra input."""def forward(self, x, emb, context=None):for layer in self:if isinstance(layer, TimestepBlock):x = layer(x, emb)elif isinstance(layer, SpatialTransformer):x = layer(x, context)else:x = layer(x)return x

2-3-1--Module0

 Module 0 是一个2D卷积层,主要对输入噪声进行特征提取;

# init 初始化
self.input_blocks = nn.ModuleList([TimestepEmbedSequential(conv_nd(dims, in_channels, model_channels, 3, padding=1))]
)# 打印 self.input_blocks[0]
TimestepEmbedSequential((0): Conv2d(4, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)

2-3-2--Module1和Module2

        Module1和Module2的结构相同,都由一个ResBlock和一个SpatialTransformer组成;

# init 初始化
for _ in range(num_res_blocks):layers = [ResBlock(ch,time_embed_dim,dropout,out_channels=mult * model_channels,dims=dims,use_checkpoint=use_checkpoint,use_scale_shift_norm=use_scale_shift_norm,)]ch = mult * model_channelsif ds in attention_resolutions:if num_head_channels == -1:dim_head = ch // num_headselse:num_heads = ch // num_head_channelsdim_head = num_head_channelsif legacy:#num_heads = 1dim_head = ch // num_heads if use_spatial_transformer else num_head_channelslayers.append(AttentionBlock(ch,use_checkpoint=use_checkpoint,num_heads=num_heads,num_head_channels=dim_head,use_new_attention_order=use_new_attention_order,) if not use_spatial_transformer else SpatialTransformer(ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim))self.input_blocks.append(TimestepEmbedSequential(*layers))self._feature_size += chinput_block_chans.append(ch)# 打印 self.input_blocks[1]
TimestepEmbedSequential((0): ResBlock((in_layers): Sequential((0): GroupNorm32(32, 320, eps=1e-05, affine=True)(1): SiLU()(2): Conv2d(320, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)))(h_upd): Identity()(x_upd): Identity()(emb_layers): Sequential((0): SiLU()(1): Linear(in_features=1280, out_features=320, bias=True))(out_layers): Sequential((0): GroupNorm32(32, 320, eps=1e-05, affine=True)(1): SiLU()(2): Dropout(p=0, inplace=False)(3): Conv2d(320, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)))(skip_connection): Identity())(1): SpatialTransformer((norm): GroupNorm(32, 320, eps=1e-06, affine=True)(proj_in): Conv2d(320, 320, kernel_size=(1, 1), stride=(1, 1))(transformer_blocks): ModuleList((0): BasicTransformerBlock((attn1): CrossAttention((to_q): Linear(in_features=320, out_features=320, bias=False)(to_k): Linear(in_features=320, out_features=320, bias=False)(to_v): Linear(in_features=320, out_features=320, bias=False)(to_out): Sequential((0): Linear(in_features=320, out_features=320, bias=True)(1): Dropout(p=0.0, inplace=False)))(ff): FeedForward((net): Sequential((0): GEGLU((proj): Linear(in_features=320, out_features=2560, bias=True))(1): Dropout(p=0.0, inplace=False)(2): Linear(in_features=1280, out_features=320, bias=True)))(attn2): CrossAttention((to_q): Linear(in_features=320, out_features=320, bias=False)(to_k): Linear(in_features=768, out_features=320, bias=False)(to_v): Linear(in_features=768, out_features=320, bias=False)(to_out): Sequential((0): Linear(in_features=320, out_features=320, bias=True)(1): Dropout(p=0.0, inplace=False)))(norm1): LayerNorm((320,), eps=1e-05, elementwise_affine=True)(norm2): LayerNorm((320,), eps=1e-05, elementwise_affine=True)(norm3): LayerNorm((320,), eps=1e-05, elementwise_affine=True)))(proj_out): Conv2d(320, 320, kernel_size=(1, 1), stride=(1, 1)))
)# 打印 self.input_blocks[2]
TimestepEmbedSequential((0): ResBlock((in_layers): Sequential((0): GroupNorm32(32, 320, eps=1e-05, affine=True)(1): SiLU()(2): Conv2d(320, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)))(h_upd): Identity()(x_upd): Identity()(emb_layers): Sequential((0): SiLU()(1): Linear(in_features=1280, out_features=320, bias=True))(out_layers): Sequential((0): GroupNorm32(32, 320, eps=1e-05, affine=True)(1): SiLU()(2): Dropout(p=0, inplace=False)(3): Conv2d(320, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)))(skip_connection): Identity())(1): SpatialTransformer((norm): GroupNorm(32, 320, eps=1e-06, affine=True)(proj_in): Conv2d(320, 320, kernel_size=(1, 1), stride=(1, 1))(transformer_blocks): ModuleList((0): BasicTransformerBlock((attn1): CrossAttention((to_q): Linear(in_features=320, out_features=320, bias=False)(to_k): Linear(in_features=320, out_features=320, bias=False)(to_v): Linear(in_features=320, out_features=320, bias=False)(to_out): Sequential((0): Linear(in_features=320, out_features=320, bias=True)(1): Dropout(p=0.0, inplace=False)))(ff): FeedForward((net): Sequential((0): GEGLU((proj): Linear(in_features=320, out_features=2560, bias=True))(1): Dropout(p=0.0, inplace=False)(2): Linear(in_features=1280, out_features=320, bias=True)))(attn2): CrossAttention((to_q): Linear(in_features=320, out_features=320, bias=False)(to_k): Linear(in_features=768, out_features=320, bias=False)(to_v): Linear(in_features=768, out_features=320, bias=False)(to_out): Sequential((0): Linear(in_features=320, out_features=320, bias=True)(1): Dropout(p=0.0, inplace=False)))(norm1): LayerNorm((320,), eps=1e-05, elementwise_affine=True)(norm2): LayerNorm((320,), eps=1e-05, elementwise_affine=True)(norm3): LayerNorm((320,), eps=1e-05, elementwise_affine=True)))(proj_out): Conv2d(320, 320, kernel_size=(1, 1), stride=(1, 1)))
)

2-3-3--Module3

        Module3是一个下采样2D卷积层。

# init 初始化
if level != len(channel_mult) - 1:out_ch = chself.input_blocks.append(TimestepEmbedSequential(ResBlock(ch,time_embed_dim,dropout,out_channels=out_ch,dims=dims,use_checkpoint=use_checkpoint,use_scale_shift_norm=use_scale_shift_norm,down=True,)if resblock_updownelse Downsample(ch, conv_resample, dims=dims, out_channels=out_ch)))# 打印 self.input_blocks[3]
TimestepEmbedSequential((0): Downsample((op): Conv2d(320, 320, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)))
)

2-3-4--Module4、Module5、Module7和Module8

        与Module1和Module2的结构相同,都由一个ResBlock和一个SpatialTransformer组成,只有特征维度上的区别;

2-3-4--Module6和Module9

        与Module3的结构相同,是一个下采样2D卷积层。

2-3--5--Module10和Module11

        Module10和Module12的结构相同,只由一个ResBlock组成。

# 打印 self.input_blocks[10]
TimestepEmbedSequential((0): ResBlock((in_layers): Sequential((0): GroupNorm32(32, 1280, eps=1e-05, affine=True)(1): SiLU()(2): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)))(h_upd): Identity()(x_upd): Identity()(emb_layers): Sequential((0): SiLU()(1): Linear(in_features=1280, out_features=1280, bias=True))(out_layers): Sequential((0): GroupNorm32(32, 1280, eps=1e-05, affine=True)(1): SiLU()(2): Dropout(p=0, inplace=False)(3): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)))(skip_connection): Identity())
)# 打印 self.input_blocks[11]
TimestepEmbedSequential((0): ResBlock((in_layers): Sequential((0): GroupNorm32(32, 1280, eps=1e-05, affine=True)(1): SiLU()(2): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)))(h_upd): Identity()(x_upd): Identity()(emb_layers): Sequential((0): SiLU()(1): Linear(in_features=1280, out_features=1280, bias=True))(out_layers): Sequential((0): GroupNorm32(32, 1280, eps=1e-05, affine=True)(1): SiLU()(2): Dropout(p=0, inplace=False)(3): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)))(skip_connection): Identity())
)

http://www.zhongyajixie.com/news/28289.html

相关文章:

  • 海安网站建设万州网站建设
  • 建设网站的报价小吃培训
  • 自学网站建设哪些网站网络营销策略案例
  • 网站开发人员要求网上网络推广
  • 如何提高网站用户体验手机制作网页
  • 西安网站推广方案推广吧
  • git做网站根目录百度客服转人工
  • url对网站有威胁怎么办建站推广
  • 怎样用zblog做网站成都搜索优化整站优化
  • 设计公司网站运营怎么注册自己的网站
  • 商业门户网站有哪些吉安seo网站快速排名
  • 好用WordPress产品展示主题长沙seo排名扣费
  • 一个公司做两个网站可以吗网站免费搭建平台
  • 网上做调查赚钱的网站有哪些网络营销专员的就业前景
  • 教育部专业申报建设 网站seo实战密码电子书
  • 网站怎样做优化网页佛山外贸seo
  • 网站百度排名优化免费网站入口在哪
  • wordpress 运行很慢搜索引擎优化效果
  • 公司网站制作深圳深圳外贸网站建设
  • 网站开发的缺点网站模板大全
  • 聊城微信推广网站图片seo优化是什么意思
  • 汕头企业网站怎么做爱站网注册人查询
  • 有没有做.net面试题的网站seo关键词排名优化销售
  • 做网站用那一种语言最好百度旧版本
  • ps如何做网站抖音seo排名优化软件
  • 用什么手机软件做网站深圳seo网络推广
  • seo口碑优化百度爱采购优化软件
  • 基于php的个人网站设计论文怎么做网络营销推广啊
  • 网站空间双线空间是什么意思网站维护推广的方案
  • 有关网站建设的外文文献2023免费推广入口