当前位置: 首页 > news >正文

民治做网站多少钱哪里有培训网

民治做网站多少钱,哪里有培训网,建设网站,临汾建设局官方网站使用Hadoop MapReduce实现各省学生总分降序排序,根据省份分出输出到不同文件 本文将展示如何使用Hadoop MapReduce对一组学生成绩数据进行处理,将各省的学生成绩按总分降序排序并按照省份进行分区将结果分别输出到不同的文件中。 数据样例 我们将使用…

使用Hadoop MapReduce实现各省学生总分降序排序,根据省份分出输出到不同文件

本文将展示如何使用Hadoop MapReduce对一组学生成绩数据进行处理,将各省的学生成绩按总分降序排序并按照省份进行分区将结果分别输出到不同的文件中。

数据样例

我们将使用以下格式的数据:
在这里插入图片描述

实现步骤

我们将通过以下步骤来实现这一目标:

**1、Mapper类:**解析每一行数据,提取省份和总分,并输出为键值对。
**2、Reducer类:**对每个省份的数据按总分降序排序后输出到相应的文件中。
**3、Partitioner类:**确保同一省份的数据被发送到同一个Reducer。
**4、Driver类:**配置并运行MapReduce作业。

代码实现

Mapper类
Mapper类将每一行数据解析为省份和总分,并输出为键值对,键是省份,值是总分和学生信息的组合。

package org.example.mapReduce;import java.io.IOException;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;public class ProvinceScoreMapper extends Mapper<Object, Text, Text, Text> {@Overrideprotected void map(Object key, Text value, Context context) throws IOException, InterruptedException {String line = value.toString();// Skip the header lineif (line.startsWith("考号")) {return;}String[] fields = line.split(" ");String province = fields[11];String totalScore = fields[10];context.write(new Text(province), new Text(totalScore + "," + line));}
}

Reducer类
Reducer类将每个省份的数据按总分降序排序后输出,使用MultipleOutputs将每个省的数据写入单独的文件。

package org.example.mapReduce;import java.io.IOException;
import java.util.Collections;
import java.util.LinkedList;
import java.util.List;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.output.MultipleOutputs;public class ProvinceScoreReducer extends Reducer<Text, Text, Text, Text> {private MultipleOutputs<Text, Text> multipleOutputs;@Overrideprotected void setup(Context context) throws IOException, InterruptedException {multipleOutputs = new MultipleOutputs<>(context);}@Overrideprotected void reduce(Text key, Iterable<Text> values, Context context) throws IOException, InterruptedException {List<String> students = new LinkedList<>();for (Text val : values) {students.add(val.toString());}// Sort students by total score in descending orderCollections.sort(students, (a, b) -> {int scoreA = Integer.parseInt(a.split(",")[0]);int scoreB = Integer.parseInt(b.split(",")[0]);return Integer.compare(scoreB, scoreA);});for (String student : students) {String[] parts = student.split(",", 2);multipleOutputs.write(new Text(parts[1]), null, key.toString() + "/part");}}@Overrideprotected void cleanup(Context context) throws IOException, InterruptedException {multipleOutputs.close();}
}

Partitioner类
Partitioner类确保同一省份的数据被发送到同一个Reducer。

package org.example.mapReduce;import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Partitioner;public class ProvincePartitioner extends Partitioner<Text, Text> {@Overridepublic int getPartition(Text key, Text value, int numPartitions) {String province = key.toString();return (province.hashCode() & Integer.MAX_VALUE) % numPartitions;}
}

Driver类
Driver类配置并运行MapReduce作业。

package org.example.mapReduce;import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.MultipleOutputs;public class ProvinceScoreSorter {public static void main(String[] args) throws Exception {if (args.length != 2) {System.err.println("Usage: ProvinceScoreSorter <input path> <output path>");System.exit(-1);}Configuration conf = new Configuration();Job job = Job.getInstance(conf, "Province Score Sorter");job.setJarByClass(ProvinceScoreSorter.class);job.setMapperClass(ProvinceScoreMapper.class);job.setPartitionerClass(ProvincePartitioner.class);job.setReducerClass(ProvinceScoreReducer.class);job.setOutputKeyClass(Text.class);job.setOutputValueClass(Text.class);FileInputFormat.addInputPath(job, new Path(args[0]));FileOutputFormat.setOutputPath(job, new Path(args[1]));MultipleOutputs.addNamedOutput(job, "province", FileOutputFormat.class, Text.class, Text.class);System.exit(job.waitForCompletion(true) ? 0 : 1);}
}

运行MapReduce作业

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

总结

通过以上步骤,我们实现了一个Hadoop MapReduce作业来对各省的学生总分进行降序排序,并将结果写入不同的文件中。

如有遇到问题可以找小编沟通交流哦。另外小编帮忙辅导大课作业,学生毕设等。不限于MapReduce, MySQL, python,java,大数据,模型训练等。 hadoop hdfs yarn spark Django flask flink kafka flume datax sqoop seatunnel echart可视化 机器学习等
在这里插入图片描述

http://www.zhongyajixie.com/news/22723.html

相关文章:

  • 商家免费网站模板今日热点新闻排行榜
  • 做视频网站需要执照吗外贸网站制作推广
  • 响应式网站pad尺寸抖音关键词排名查询
  • 专门做win7系统的网站怎么制作网站链接
  • jfinal网站开发ciliba磁力搜索引擎
  • 安卓电商app开发seo广告投放是什么意思
  • seo推广计划重庆seo网络推广
  • 校园互动网站建设seo标题优化导师咨询
  • 朝阳网站开发门户网站制作
  • 如何建设网站并与数据库相连全达seo
  • 天津建网站的公司大数据精准营销
  • php框架做网站软文素材库
  • 绿色国网app下载地址沈阳网站关键词优化多少钱
  • 湖滨网站建设推广代理登录页面
  • wordpress 隐藏文章标题郑州seo关键词优化公司
  • 网站建设技术服务的方式是什么网站群发软件
  • 怎样建设一个游戏网站营销软文800字范文
  • 做网站编程百度网页版登录首页
  • 服务器iis做网站公司seo是什么级别
  • ps怎么做网站首页和超链接google chrome
  • 做logo设计的网站大片网站推广
  • 获得网站php管理员密码指数基金排名前十名
  • 网站物理结构如何免费制作自己的网站
  • 浏览器做单页网站项目实时新闻
  • 找百度公司做网站怎么样怎么创建网站教程
  • 清河做网站多少钱腾讯企点官网
  • 泰安可靠的网站建设天津建站网
  • 为客户做网站的方案互联网广告联盟
  • 北京好的网站建设公司百度客服怎么转人工
  • 惠州禅城网站建设郑州seo优化外包顾问