当前位置: 首页 > news >正文

免费网站新域名杭州网站优化搜索

免费网站新域名,杭州网站优化搜索,网页的设计流程是怎样的,网站备案怎么做超链接英雄联盟S14世界赛选手数据可视化 由于本学期有一门数据可视化课程,课程结课作业要求完成一个数据可视化的小Demo,于是便有了这个小项目,课程老师要求比较简单,只要求熟练运用可视化工具展示数据,并不要求数据来源&am…

英雄联盟S14世界赛选手数据可视化

由于本学期有一门数据可视化课程,课程结课作业要求完成一个数据可视化的小Demo,于是便有了这个小项目,课程老师要求比较简单,只要求熟练运用可视化工具展示数据,并不要求数据来源,因此这个小项目非常简单


项目简介

这是一个基于 PyEcharts 的数据可视化小项目,展示了英雄联盟 S14 世界赛选手的关键数据表现,适合作为数据可视化课程作业或兴趣项目。

项目特点:

  • 数据源权威,来源于 Kaggle。
  • 涉及多种可视化类型,包括柱状图、箱形图、雷达图等。
  • 共包含 14 个可视化图表,分布在 3 个 HTML 页面中,方便浏览与展示。

完整代码:英雄联盟S14世界赛选手数据可视化

数据来源

数据来自 Kaggle 平台的 2024 LoL Championship Player Stats & Swiss Stage。

  • 数据涵盖选手的各项核心指标,如 KDA、场均击杀、场均死亡等。
  • 细化到每分钟视野分数、野区控制等高级数据。

数据示例

TeamNamePlayerNamePositionGamesPenta KillsSolo KillsCountryFlashKeybind
Top Esports369Top802ChinaD
Dplus KIAaimingAdc902South KoreaF
MAD Lions KOIalvaroSupport500SpainD
LNG EsportszikaTop802ChinaD

效果展示

主要采用PyEcharts来完成数据可视化

数据总览

该模块主要有一个各队伍平均胜率的柱状图和全部选手的国籍分布饼图组成

在这里插入图片描述

# 计算各队伍平均胜率,并将其转换为百分数形式(乘以100并保留两位小数)
team_win_rates = df.groupby('TeamName')['Win rate'].mean().reset_index()
team_win_rates['Win rate'] = team_win_rates['Win rate'].apply(lambda x: round(x * 100, 2))
print(team_win_rates)
# 绘制柱状图
bar = Bar(init_opts=opts.InitOpts(width="1100px", height="500px")
)
bar.add_xaxis(team_win_rates['TeamName'].tolist())
bar.add_yaxis("平均胜率", team_win_rates['Win rate'].tolist(), category_gap="60%")
bar.set_global_opts(title_opts=opts.TitleOpts(title="各队伍平均胜率", subtitle=""),xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=45)),yaxis_opts=opts.AxisOpts(name="胜率", min_=0, max_=100),visualmap_opts=opts.VisualMapOpts(is_show=False, max_=100, min_=0)
)
bar.render("static/charts/team_win_rates.html")

在这里插入图片描述

# 国家分布
# 按照国家进行分组,计算每个国家的选手数量
grouped_data = df.groupby('Country').size()# 将结果转换为 DataFrame,并命名为 'Count'
country_data = grouped_data.reset_index(name='Count')
print(country_data)
country_pie = (Pie(init_opts=opts.InitOpts(theme="macarons")).add("", [list(z) for z in zip(country_data['Country'], country_data['Count'])]).set_global_opts(title_opts=opts.TitleOpts(title=""))
)
country_pie.render("static/charts/country_distribution_chart.html")

主要数据

该模块主要涉及了选手的各方位数据总览情况,能够直观的观察各方面数据突出的选手,其中包括:场均击杀、

场均KDA、场均死亡、场均助攻、辅助视野综合得分、选手平均击杀、选手闪现按键情况

在这里插入图片描述

# 场均击杀
sorted_df = df.sort_values(by='Avg kills', ascending=False)
avg_kills = sorted_df[['PlayerName', 'Avg kills']]
avg_kills_top10 = avg_kills[0:10]
print(avg_kills_top10)
# 创建Bar实例,用于构建柱状图
bar = Bar(init_opts=opts.InitOpts(width="600px", height="300px")
)
# 添加x轴数据,即选手姓名
bar.add_xaxis(avg_kills_top10['PlayerName'].tolist())
# 添加y轴数据,即场均击杀数,并设置系列名称为"场均击杀数"
bar.add_yaxis("场均击杀数", avg_kills_top10['Avg kills'].tolist())
# 设置全局配置项
bar.set_global_opts(title_opts=opts.TitleOpts(title="场均击杀榜前十"),xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=45),  # 让x轴标签旋转45度,避免文字重叠),yaxis_opts=opts.AxisOpts(name="场均击杀数"),  # 设置y轴名称visualmap_opts=opts.VisualMapOpts(is_show=False, max_=6, min_=4)
)
bar.render("static/charts/avg_kills_top10.html")

在这里插入图片描述

# KDA
kda_top10 = df.sort_values(by='KDA', ascending=False)[['PlayerName', 'KDA']][0:10]
print(kda_top10)
bar = Bar(init_opts=opts.InitOpts(width="600px", height="300px")
)
bar.add_xaxis(kda_top10['PlayerName'].tolist())bar.add_yaxis('场均KDA', kda_top10['KDA'].tolist())
# 设置全局配置项
bar.set_global_opts(title_opts=opts.TitleOpts(title="场均KDA前十"),xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=45),  # 让x轴标签旋转45度,避免文字重叠),yaxis_opts=opts.AxisOpts(name="场均KDA"),  # 设置y轴名称visualmap_opts=opts.VisualMapOpts(is_show=False, max_=10, min_=6)
)
bar.render("static/charts/kda_top10.html")

在这里插入图片描述

# 场均死亡
deaths_top10 = df.sort_values(by='Avg deaths', ascending=False)[['PlayerName', 'Avg deaths']][0:10]
print(deaths_top10)
bar = Bar(init_opts=opts.InitOpts(width="600px", height="300px", theme="macarons"))
bar.add_xaxis(deaths_top10['PlayerName'].tolist())
bar.add_yaxis('场均死亡', deaths_top10['Avg deaths'].tolist())
# 设置全局配置项
bar.set_global_opts(title_opts=opts.TitleOpts(title="场均死亡前十"),xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=45),  # 让x轴标签旋转45度,避免文字重叠),yaxis_opts=opts.AxisOpts(name="场均死亡"),  # 设置y轴名称visualmap_opts=opts.VisualMapOpts(is_show=False, max_=6, min_=4)
)
bar.render("static/charts/deaths_top10.html")

在这里插入图片描述

# 场均助攻
assists_top10 = df.sort_values(by='Avg assists', ascending=False)[['PlayerName', 'Avg assists']][0:10]
print(assists_top10)
bar = Bar(init_opts=opts.InitOpts(width="600px", height="300px", theme="macarons")
)
bar.add_xaxis(assists_top10['PlayerName'].tolist())bar.add_yaxis('场均助攻', assists_top10['Avg assists'].tolist())# 设置全局配置项
bar.set_global_opts(title_opts=opts.TitleOpts(title="场均助攻前十"),xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=45),  # 让x轴标签旋转45度,避免文字重叠),yaxis_opts=opts.AxisOpts(name="场均助攻"),  # 设置y轴名称visualmap_opts=opts.VisualMapOpts(is_show=False, max_=13, min_=10)
)
bar.render("static/charts/assists_top10.html")

其中每分钟视野分数(VSPM)、每分钟赢得的野区分数(每分钟赢得的野区分数)、每分钟控制野区分数(Avg WCPM)、每分钟视野控制分数(Avg VWPM)各自的权重为1,可自行更改

在这里插入图片描述

# 辅助野区视野排行
df['custom_sort'] = df['VSPM'] * 25 + df['Avg WPM'] * 25 + df['Avg WCPM'] * 25 + df['Avg VWPM'] * 25
support_top_10 = df.sort_values(by='custom_sort', ascending=False)[['PlayerName', 'VSPM', 'Avg WPM', 'Avg WCPM', 'Avg VWPM', 'custom_sort']][0:10]
print(support_top_10)
# 创建堆叠柱状图
bar_stacked = Bar(init_opts=opts.InitOpts(width="1000px", height="400px", theme='macarons')
)
# 添加 X 轴数据(选手名字)
bar_stacked.add_xaxis(support_top_10['PlayerName'].tolist())
# 添加堆叠柱状图的每一项数据
bar_stacked.add_yaxis("每分钟视野分数", support_top_10['VSPM'].tolist(), stack="stack1")
bar_stacked.add_yaxis("每分钟赢得的野区分数", support_top_10['Avg WPM'].tolist(), stack="stack1")
bar_stacked.add_yaxis("每分钟控制野区分数", support_top_10['Avg WCPM'].tolist(), stack="stack1")
bar_stacked.add_yaxis("每分钟视野控制分数", support_top_10['Avg VWPM'].tolist(), stack="stack1")
# 设置全局配置
bar_stacked.set_global_opts(title_opts=opts.TitleOpts(title="辅助野区视野排行"),yaxis_opts=opts.AxisOpts(name=""),xaxis_opts=opts.AxisOpts(name="选手"),legend_opts=opts.LegendOpts(pos_left="right", orient="vertical"),  # 设置图例在左侧
)
# 渲染图表到 HTML 文件
bar_stacked.render("static/charts/support_top_10.html")

各位置场均击杀箱形图:

在这里插入图片描述

# 准备箱线图数据
data = [df[df['Position'] == pos]['Avg kills'].tolist() for pos in df['Position'].unique()]
print(data)
boxplot = Boxplot(init_opts=opts.InitOpts(width="600px", height="400px")
)
boxplot.add_xaxis(df['Position'].unique().tolist())
boxplot.add_yaxis("平均击杀数", boxplot.prepare_data(data), itemstyle_opts=opts.ItemStyleOpts(color="black"))
boxplot.set_global_opts(title_opts=opts.TitleOpts(title="不同位置选手平均击杀数分布"),xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=45)  # 此处也是修改为axislabel_opts),yaxis_opts=opts.AxisOpts(name="平均击杀数")
)
boxplot.render("static/charts/avg_kills_distribution.html")

在这里插入图片描述

# 闪现数据
flash = df.groupby('FlashKeybind').size()
flash_data = flash.reset_index(name='flash_group')
创建饼图
pie = Pie(init_opts=opts.InitOpts(width="400px", height="400px")
)
# 添加数据,设置标签格式
pie.add("闪现按键使用情况",[list(z) for z in zip(flash_data['FlashKeybind'].tolist(), flash_data['flash_group'].tolist())],radius=["30%", "60%"],label_opts=opts.LabelOpts(formatter="{b}")
)
# 设置标题
pie.set_global_opts(title_opts=opts.TitleOpts(title="闪现按键"))# 渲染到本地文件
pie.render("static/charts/flash.html")

我的主队

由于作者喜欢TheShy选手,所以主队是WBG,但是此次世界赛TheShy选手选择了休息,但是也没有新的主队会,所以主队依然是WBG

共有五个选手的雷达图

六大维度:

  • KDA
  • KP% (击杀参与率)
  • CSPerMin (每分钟补刀数)
  • GoldPerMin (每分钟经济)
  • DPM (每分钟伤害)
  • VSPM (每分钟视野分数)

在这里插入图片描述

在这里插入图片描述

# 获取选手雷达图的数据
def get_player_render_data(player_name, file_name):player_data = df[df['PlayerName'] == player_name][['KDA', 'KP%', 'CSPerMin', 'GoldPerMin', 'DPM', 'VSPM']].iloc[0]print(player_data)# 雷达图的维度attributes = ['KDA', 'KP%', 'CSPerMin', 'GoldPerMin', 'DPM', 'VSPM']values = player_data.tolist()# 配置雷达图weradar = Radar(init_opts=opts.InitOpts(width="350px", height="350px"))# 定义雷达图的每个维度radar.add_schema(schema=[opts.RadarIndicatorItem(name='KDA', max_=10),opts.RadarIndicatorItem(name='击杀参与率', max_=1),opts.RadarIndicatorItem(name='每分钟补兵', max_=10),opts.RadarIndicatorItem(name='分钟收入金币', max_=500),opts.RadarIndicatorItem(name='分钟伤害', max_=800),opts.RadarIndicatorItem(name='分钟视野分', max_=5)])# 添加数据系列,并设置图例radar.add(player_name,[values],color="blue")# 设置全局选项radar.set_global_opts(title_opts=opts.TitleOpts(title=player_name),legend_opts=opts.LegendOpts(is_show=True, orient="vertical", pos_left="right"))radar.render(file_name)
# 我的主队
get_player_render_data('crisp', 'static/charts/crisp_render_data.html')
get_player_render_data('light', 'static/charts/light_render_data.html')
get_player_render_data('xiaohu', 'static/charts/xiaohu_render_data.html')
get_player_render_data('tarzan', 'static/charts/tarzan_render_data.html')
get_player_render_data('breathe', 'static/charts/breathe_render_data.html')

整体效果

整体效果就是将各个图表集中到了一起,加了一些样式,以一个静态网站来展示

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

完整效果请访问index.html 页面

http://www.zhongyajixie.com/news/12924.html

相关文章:

  • 搜索引擎培训班沈阳seo顾问
  • 网站里面发消息怎么做超链接vi设计公司
  • 用php做动态网站樱桃磁力bt天堂
  • 初中毕业学网站开发工程师steam交易链接怎么获取
  • 做现货需要关注的网站最有效的15个营销方法
  • wordpress在线教育系统临沂seo推广
  • 文登网站建设网络营销推广技巧
  • 青海市住房和城乡建设厅网站百度推广方法
  • 青海公路工程建设总公司网站免费网站推广软件哪个好
  • 什么网站可以做国外批发网厦门人才网官网登录
  • 网络营销推广咨询收费标准seo岗位职责
  • 做bt搜索网站网站制作公司
  • wordpress oss不显示在线观看的seo综合查询
  • 徐州市网站建设宁波网站推广优化哪家正规
  • 网站制作公司哪家南京大门安装制表白网站制作百度网盘电话人工服务
  • 用织梦做的网站下载网站媒体推广
  • 旅游网站开发目标行业关键词词库
  • 需要外包团队做网站怎么提需求上海关键词优化报价
  • 网站资料要提供哪些网店推广网站
  • 怀化做网站性价比高seo排名
  • 定制一个微信小程序要多少钱优化软件seo排名
  • 优化网站的公司哪家好惠州优化怎么做seo
  • 政府移动网站建设整体风格控制学网络营销去哪个学校
  • 无锡网站定制搜索引擎优化教程
  • 自学做网站界面合肥seo推广公司
  • 个人网站做多久有效果抖音seo关键词优化排名
  • 小说网站建设的支柱培训网站排名
  • 快速建站公司地址长春百度推广电话
  • 学设计的网站项目营销策划方案
  • 免费做计算机题的网站百度app下载链接