当前位置: 首页 > news >正文

学生成绩管理系统 网站建设品牌推广平台

学生成绩管理系统 网站建设,品牌推广平台,阿里云网站建设最后什么样子,可以做ppt的网站有哪些注意: 如何更改图像尺寸在这篇文章中,修改完之后你就可以把你自己的数据集应用到网络。如果你的训练集与测试集也分别为30和5,并且样本类别也为3类,那么你只需要更改图像标签文件地址以及标签内容(如下面两图所示&…

注意:

如何更改图像尺寸在这篇文章中,修改完之后你就可以把你自己的数据集应用到网络。如果你的训练集与测试集也分别为30和5,并且样本类别也为3类,那么你只需要更改图像标签文件地址以及标签内容(如下面两图所示)。 图片名-标签文件如何生成请看这篇文章。

如果你想扩大数据集量,那么你只需要更改对应的文件内标签长度以及数据集图像量。

再次注意:我已经扩大了数据集的数量,展示在正文1的后面!

正文1:

样本取自岩心照片,识别岩心是最基础的地质工作,如果用机器来划分岩心类型则会大大削减工作量。

下面叙述中0指代Anhydrite_rock(膏岩),1指代Limestone(灰岩),2指代Gray Anhydrite_rock(灰质膏岩)。

原本自定义训练集与测试集是这样的:

训练集x_train: 

标签是这样的y_train:

 测试集x_test:

标签是这样的y_test:

但是由于图片像素为3456*5184,电脑内存不足,所以只能统一修i该为下面(256*256): 

训练集: 

  测试集:

两个数据集的标签没有更改。

#导入库
import os
import cv2
import torch
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from torchvision.io import read_image
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
from torchvision import transforms
import tensorflow.keras as ka
import datetime
import tensorflow as tf
import os
import PySide2
from tensorflow.keras.layers import Conv2D,BatchNormalization,Activation,MaxPooling2D,Dropout,Flatten,Dense
from tensorflow.keras import Model
import tensorflow as tf'''加载数据集'''
#创建自定义数据集类,参考可见:http://t.csdn.cn/gkVNC
class Custom_Dataset(Dataset):#函数,设置图像集路径索引、图像标签文件读取def __init__(self, img_dir, img_label_dir, transform=None):super().__init__()self.img_dir = img_dirself.img_labels = pd.read_csv(img_label_dir)self.transform = transform#函数,设置数据集长度def __len__(self):return len(self.img_labels)#函数,设置指定图像读取、指定图像标签索引def __getitem__(self, index):#'所在文件路径+指定图像名'img_path = os.path.join(self.img_dir + self.img_labels.iloc[index, 1])#读指定图像#image = cv2.imdecode(np.fromfile(img_path,dtype=np.uint8),-1)image=plt.imread(img_path)#height,width = image.shape[0],image.shape[1]  #获取原图像的垂直方向尺寸和水平方向尺寸。#image = image.resize((height//4,width//4))#'指定图像标签'label = self.img_labels.iloc[index, 0]return image, label'''画图函数'''
def tensorToimg(img_tensor):img=img_tensorplt.imshow(img)#python3.X必须加下行plt.show()#标签指示含义
label_dic = {0: '膏岩', 1: '灰岩', 2: '灰质膏岩'}
'''图像集及标签路径'''
label_path = "C:/Users/yeahamen/AppData/Local/Programs/Python/Python310/train_label.csv"
img_root_path = "C:/Users/yeahamen/Desktop/custom_dataset/train_revise/"
test_image_path="C:/Users/yeahamen/Desktop/custom_dataset/test_revise/"
test_label_path="C:/Users/yeahamen/AppData/Local/Programs/Python/Python310/test_label.csv"
#加载图像集与标签路径到函数
#实例化类
dataset = Custom_Dataset(img_root_path, label_path)
dataset_test = Custom_Dataset(test_image_path,test_label_path)'''查看指定图像(18)'''
#索引指定位置的图像及标签
image, label = dataset.__getitem__(18)
#展示图片及其形状(tensor)
print('单张图片(18)形状:',image.shape)
print('单张图片(18)标签:',label_dic[label])#批量输出
dataloader = DataLoader(dataset, batch_size=1, shuffle=True)
'''查看图像的形状'''
for imgs, labels in dataloader:print('一批训练为1张图片(随机)形状:',imgs.shape)#一批图像形状:torch.Size([5, 3456, 5184, 3])print('一批训练为1张图片(随机)标签:',labels)#标签:tensor([3, 2, 3, 3, 1])break#仅需要查看一批'''查看自定义数据集'''
showimages=[]
showlabels=[]
#把图片信息依次加载到列表
for imgs, labels in dataloader:c = torch.squeeze(imgs, 0)#减去一维数据形成图片固定三参数d = torch.squeeze(labels,0)showimages.append(c)showlabels.append(d)
#依次画出图片
def show_image(nrow, ncol, sharex, sharey):fig, axs = plt.subplots(nrow, ncol, sharex=sharex, sharey=sharey, figsize=(10, 10))for i in range(0,nrow):for j in range(0,ncol):axs[i,j].imshow(showimages[i*4+j])axs[i,j].set_title('Label={}'.format(showlabels[i*4+j]))plt.show()plt.tight_layout()
#给定参数
#show_image(2, 4, False, False)'''创建训练集与测试集'''
dataloader_train = DataLoader(dataset, batch_size=30, shuffle=True)
for imgs, labels in dataloader_train:x_train=imgsy_train=labels
print('训练集图像形状:',x_train.shape)
print('训练集标签形状:',y_train.shape)
dataloader_test = DataLoader(dataset_test, batch_size=5, shuffle=True)
for imgs, labels in dataloader_test:x_test=imgsy_test=labels
print('测试集图像形状:',x_test.shape)
print('测试集标签形状:',y_test.shape)'''将图像转变为网络可用的数据类型'''
x_train,x_test = tf.cast(x_train/255.0,tf.float32),tf.cast(x_test/255.0,tf.float32)
y_train,y_test = tf.cast(y_train,tf.int16),tf.cast(y_test,tf.int16)#参考:http://t.csdn.cn/eRQX2
print('注意:',x_train.shape)
'''归一化灰度值'''
x_train = x_train/255
x_test = x_test/255'''标签转为独热编码,注意:如果标签不是从0开始,独热编码会增加1位(即0)'''
y_train = ka.utils.to_categorical(y_train)
y_test = ka.utils.to_categorical(y_test)
print('独热后训练集标签形状:',y_train.shape)
print('独热后测试集标签形状:',y_test.shape)
#获取测试集特征数
num_classes = y_test.shape[1]'''CNN模型'''
#输入3456*5184*3
model = ka.Sequential([ka.layers.Conv2D(filters = 32,kernel_size=(5,5),input_shape=(256,256,3),data_format="channels_last",activation='relu'),#卷积3456*5184*32、卷积层;参量依次为:卷积核个数、卷积核尺寸、单个像素点尺寸、使用ReLu激活函数、解释可见:http://t.csdn.cn/6s3dzka.layers.MaxPooling2D(pool_size=(4,4),strides = None,padding='VALID'),#池化1—864*1296*32、最大池化层,池化核尺寸4*4、步长默认为4、无填充、解释可见:http://t.csdn.cn/sES2uka.layers.MaxPooling2D(pool_size=(2,2),strides = None,padding='VALID'),#池化2—432*648*32再加一个最大池化层,池化核尺寸为2*2、步长默认为2、无填充ka.layers.Dropout(0.2),#模型正则化防止过拟合, 只会在训练时才会起作用,随机设定输入的值x的某一维=0,这个概率为输入的百分之20,即丢掉1/5神经元不激活#在模型预测时,不生效,所有神经元均保留也就是不进行dropout。解释可见:http://t.csdn.cn/RXbmS、http://t.csdn.cn/zAIuJka.layers.Flatten(),#拉平432*648*32=8957952;拉平池化层为一个向量ka.layers.BatchNormalization(),#批标准化层,提高模型准确率ka.layers.Dense(10,activation='relu'),#全连接层1,10个神经元,激活函数为ReLuka.layers.Dense(num_classes,activation='softmax')])#全连接层2,3个神经元(对应标签0-2),激活函数为softmax,作用是把神经网络的输出转化为概率,参考可见:http://t.csdn.cn/bcWgu;http://t.csdn.cn/A1Jyn
'''模型参数展示、编译与训练'''				   
model.summary()
model.compile(loss='categorical_crossentropy',optimizer='adam',metrics=['accuracy'])
startdate = datetime.datetime.now()
#训练轮数epochs=n,即训练n轮
model.fit(x_train,y_train,validation_data=(x_test,y_test),epochs=100,batch_size=1,verbose=2)
#训练样本、训练标签、指定验证数据为测试集、训练轮数、显示每一轮训练进程,参考可见:http://t.csdn.cn/oE46K
#获取训练结束时间
enndate=datetime.datetime.now()
print("训练用时:"+str(enndate-startdate))

程序运行结果是这样的:

 显然由于样本过少,模型训练精度并不高,3轮训练达到0.4;如果有时间再进一步增加样本数量并完善。

正文2

由之前的30个训练集、5个测试集扩大到320个训练集,40个测试集:

训练集:

测试集 :

 修改后的代码如下,你可以与上面的代码进行对比,从而修改数据集量为适合你的大小!

#导入库
import os
import cv2
import torch
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from torchvision.io import read_image
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
from torchvision import transforms
import tensorflow.keras as ka
import datetime
import tensorflow as tf
import os
import PySide2
from tensorflow.keras.layers import Conv2D,BatchNormalization,Activation,MaxPooling2D,Dropout,Flatten,Dense
from tensorflow.keras import Model
import tensorflow as tf'''加载数据集'''
#创建自定义数据集类,参考可见:http://t.csdn.cn/gkVNC
class Custom_Dataset(Dataset):#函数,设置图像集路径索引、图像标签文件读取def __init__(self, img_dir, img_label_dir, transform=None):super().__init__()self.img_dir = img_dirself.img_labels = pd.read_csv(img_label_dir)self.transform = transform#函数,设置数据集长度def __len__(self):return len(self.img_labels)#函数,设置指定图像读取、指定图像标签索引def __getitem__(self, index):#'所在文件路径+指定图像名'img_path = os.path.join(self.img_dir + self.img_labels.iloc[index, 1])#读指定图像#image = cv2.imdecode(np.fromfile(img_path,dtype=np.uint8),-1)image=plt.imread(img_path)#height,width = image.shape[0],image.shape[1]  #获取原图像的垂直方向尺寸和水平方向尺寸。#image = image.resize((height//4,width//4))#'指定图像标签'label = self.img_labels.iloc[index, 0]return image, label'''画图函数'''
def tensorToimg(img_tensor):img=img_tensorplt.imshow(img)#python3.X必须加下行plt.show()#标签指示含义
label_dic = {0: '膏岩', 1: '灰岩', 2: '灰质膏岩',3: '膏质灰岩'}
'''图像集及标签路径'''
label_path = "C:/Users/yeahamen/AppData/Local/Programs/Python/Python310/train_label.csv"
img_root_path = "C:/Users/yeahamen/Desktop/custom_dataset/train_revise/"
test_image_path="C:/Users/yeahamen/Desktop/custom_dataset/test_revise/"
test_label_path="C:/Users/yeahamen/AppData/Local/Programs/Python/Python310/test_label.csv"
#加载图像集与标签路径到函数
#实例化类
dataset = Custom_Dataset(img_root_path, label_path)
dataset_test = Custom_Dataset(test_image_path,test_label_path)'''查看指定图像(18)'''
#索引指定位置的图像及标签
image, label = dataset.__getitem__(18)
#展示图片及其形状(tensor)
print('单张图片(18)形状:',image.shape)
print('单张图片(18)标签:',label_dic[label])#批量输出
dataloader = DataLoader(dataset, batch_size=1, shuffle=True)
'''查看图像的形状'''
for imgs, labels in dataloader:print('一批训练为1张图片(随机)形状:',imgs.shape)#一批图像形状:torch.Size([5, 256, 256, 3])print('一批训练为1张图片(随机)标签:',labels)#标签:tensor([3, 2, 3, 3, 1])break#仅需要查看一批'''查看自定义数据集'''
showimages=[]
showlabels=[]
#把图片信息依次加载到列表
for imgs, labels in dataloader:c = torch.squeeze(imgs, 0)#减去一维数据形成图片固定三参数d = torch.squeeze(labels,0)showimages.append(c)showlabels.append(d)
#依次画出图片
def show_image(nrow, ncol, sharex, sharey):fig, axs = plt.subplots(nrow, ncol, sharex=sharex, sharey=sharey, figsize=(10, 10))for i in range(0,nrow):for j in range(0,ncol):axs[i,j].imshow(showimages[i*4+j])axs[i,j].set_title('Label={}'.format(showlabels[i*4+j]))plt.show()plt.tight_layout()
#给定参数
#show_image(2, 4, False, False)'''创建训练集与测试集'''
dataloader_train = DataLoader(dataset, batch_size=320, shuffle=True)
for imgs, labels in dataloader_train:x_train=imgsy_train=labels
print('训练集图像形状:',x_train.shape)
print('训练集标签形状:',y_train.shape)
dataloader_test = DataLoader(dataset_test, batch_size=40, shuffle=True)
for imgs, labels in dataloader_test:x_test=imgsy_test=labels
print('测试集图像形状:',x_test.shape)
print('测试集标签形状:',y_test.shape)'''将图像转变为网络可用的数据类型'''
X_test = x_test#这里保留是为了预测时查看原始图像
Y_test = y_test#这里保留是为了预测时查看原始标签
x_train,x_test = tf.cast(x_train/255.0,tf.float32),tf.cast(x_test/255.0,tf.float32)
y_train,y_test = tf.cast(y_train,tf.int16),tf.cast(y_test,tf.int16)#参考:http://t.csdn.cn/eRQX2
print('注意:',x_train.shape)
'''归一化灰度值'''
x_train = x_train/255
x_test = x_test/255'''标签转为独热编码,注意:如果标签不是从0开始,独热编码会增加1位(即0)'''
y_train = ka.utils.to_categorical(y_train)
y_test = ka.utils.to_categorical(y_test)
print('独热后训练集标签形状:',y_train.shape)
print('独热后测试集标签形状:',y_test.shape)
#获取测试集特征数
num_classes = y_test.shape[1]'''CNN模型'''
#输入256*256*3
model = ka.Sequential([ka.layers.Conv2D(filters = 32,kernel_size=(5,5),input_shape=(256,256,3),data_format="channels_last",activation='relu'),#卷积252*252*32、卷积层;参量依次为:卷积核个数、卷积核尺寸、单个像素点尺寸、使用ReLu激活函数、解释可见:http://t.csdn.cn/6s3dzka.layers.MaxPooling2D(pool_size=(4,4),strides = None,padding='VALID'),#池化1—63*63*32、最大池化层,池化核尺寸4*4、步长默认为4、无填充、解释可见:http://t.csdn.cn/sES2uka.layers.MaxPooling2D(pool_size=(2,2),strides = None,padding='VALID'),#池化2—31*31*32再加一个最大池化层,池化核尺寸为2*2、步长默认为2、无填充ka.layers.Dropout(0.2),#模型正则化防止过拟合, 只会在训练时才会起作用,随机设定输入的值x的某一维=0,这个概率为输入的百分之20,即丢掉1/5神经元不激活#在模型预测时,不生效,所有神经元均保留也就是不进行dropout。解释可见:http://t.csdn.cn/RXbmS、http://t.csdn.cn/zAIuJka.layers.Flatten(),#拉平432*648*32=8957952;拉平池化层为一个向量ka.layers.BatchNormalization(),#批标准化层,提高模型准确率ka.layers.Dense(50,activation='relu'),#全连接层1,10个神经元,激活函数为ReLuka.layers.Dense(num_classes,activation='softmax')])#全连接层2,4个神经元(对应标签0-3),激活函数为softmax,作用是把神经网络的输出转化为概率,参考可见:http://t.csdn.cn/bcWgu;http://t.csdn.cn/A1Jyn
'''模型参数展示、编译与训练'''				   
model.summary()
model.compile(loss='categorical_crossentropy',optimizer='adam',metrics=['accuracy'])
startdate = datetime.datetime.now()
#训练轮数epochs=n,即训练n轮
history = model.fit(x_train,y_train,validation_data=(x_test,y_test),epochs=40,batch_size=5,verbose=2)
#训练样本、训练标签、指定验证数据为测试集、训练轮数、显示每一轮训练进程,参考可见:http://t.csdn.cn/oE46K
#获取训练结束时间
enndate=datetime.datetime.now()
print("训练用时:"+str(enndate-startdate))#模型损失值与精度画图展示
#参考http://t.csdn.cn/fUdtO
print(history.history)
loss = history.history['loss']          #训练集损失
val_loss = history.history['val_loss']  #测试集损失
acc = history.history['accuracy']            #训练集准确率
val_acc = history.history['val_accuracy']    #测试集准确率plt.figure(figsize=(10,3))
plt.subplot(121)
plt.plot(loss,color='b',label='train')
plt.plot(val_loss,color='r',label='test')
plt.ylabel('Loss')
plt.legend()plt.subplot(122)
plt.plot(acc,color='b',label='train')
plt.plot(val_acc,color='r',label='test')
plt.ylabel('Accuracy')
plt.legend()
plt.show()plt.figure(2)
'''使用模型进行预测'''
for i in range(10):#在测试集中随机选10个random_test = np.random.randint(1,40)plt.subplot(2,5,i+1)plt.axis('off')#去掉坐标轴plt.imshow(X_test[random_test])#展示要预测的图片predict_image = tf.reshape(x_test[random_test],(1,256,256,3))y_label_predict = np.argmax(model.predict(predict_image))#使用模型进行预测plt.title('R_value:'+str(Y_test[random_test])+'\nP_value:'+str(y_label_predict))#图名显示预测值与实际标签值进行对比
plt.show()

在这里我展示无论训练几轮都会有的输出面板:

下面展示训练5轮、10轮、20轮、40轮的结果。 

训练5轮结果:

 

 

训练10轮结果:

 

 

 训练20轮结果:

 

 

 

  训练40轮结果:

 

 

 识别精度的提升是显而易见的!

 最后放上整个实践过程用到的模块:

import os

import cv2

import torch

import pylab

import PySide2

import datetime

import numpy as np

import pandas as pd

from PIL import Image

import tensorflow as tf

import tensorflow.keras as ka

from torchvision import models

import matplotlib.pyplot as plt

from tensorflow.keras import Model

from torchvision import transforms

from torch.utils.data import Dataset

from torchvision.io import read_image

from torch.utils.data import DataLoader

import tensorflow.keras.applications.vgg19 as vgg19

import tensorflow.keras.preprocessing.image as imagepre

from tensorflow.keras.layers import Conv2D,BatchNormalization,Activation,MaxPooling2D,Dropout,Flatten,Dense

http://www.zhongyajixie.com/news/1213.html

相关文章:

  • 杭州专业做网站的公司网站推广软件免费版下载
  • 网站开发维护公司微信裂变营销软件
  • 做那种的视频网站有哪些seo外包方案
  • 美食网站设计方案北京百度公司总部电话
  • 定制网站开发成本估算表怎么推广游戏代理赚钱
  • 学做网站 软件网站案例
  • 动态域名可以做网站吗推广技巧
  • 奇趣网做网站互联网营销的方法
  • 商丘给企业做网站的公司厦门网络推广外包
  • 北京 做网站 公司珠海seo推广
  • 注册网站需要多久市场推广
  • 滕州网站建设招聘谁有推荐的网址
  • 太原做网站的通讯公司有哪些seo服务合同
  • wordpress关于我们插件seo查询5118
  • 网站开发设计公司简介站长之家seo概况查询
  • 网站不备案做电影网站国内seo服务商
  • 网站内容框架买卖交易网
  • 永久有效的代理ip北京网站优化效果
  • 北京电子商务网站建设女教师遭网课入侵视频大全
  • 可做外贸的网站有哪些百度资源
  • 网站建设与管理t7372国际最新十大新闻事件
  • 成武县住房和城乡建设厅网站哪些平台可以发布推广信息
  • 做室内设计的网站有哪些方面搜索关键词排名查询
  • 夏邑县百城建设提质网站和生活爱辽宁免费下载安装
  • 网站做互动百度区域代理
  • 手机触屏网站开发反向链接查询
  • 视频拍摄方法有哪些优化seo招聘
  • 网站域名后缀有什么用自媒体服务平台
  • 深圳人才引进入户申请官网关键词seo是什么意思
  • 什么网站上做效果图可以赚钱培训机构招生方案模板