当前位置: 首页 > news >正文

成都旅游酒店推荐快速排名优化公司

成都旅游酒店推荐,快速排名优化公司,网站开发到发布,没有服务器怎么做网站今日继续我的Jetsonnano学习之路,今日学习安装使用的是:MediaPipe 一款开源的多媒体机器学习模型应用框架。可在移动设备、工作站和服务 器上跨平台运行,并支持移动 GPU 加速。 介绍与程序搬运官方,只是自己的学习记录笔记&am…
今日继续我的Jetsonnano学习之路,今日学习安装使用的是:MediaPipe  一款开源的多媒体机器学习模型应用框架。可在移动设备、工作站和服务 器上跨平台运行,并支持移动 GPU 加速。
介绍与程序搬运官方,只是自己的学习记录笔记,同时记录一些自己的操作过程。

目录

MediaPipe介绍与安装:

安装更新 APT 下载列表:

安装 pip:

更新 pip:

传输文件:

MediaPipe使用流程:

Mediapipe 人脸识别:

输入指令安装依赖包:

编写Python程序:

效果测试:

Mediapipe 手势识别:

 编写python程序:

 效果测试:


MediaPipe介绍与安装:

MediaPipe 优点
1) 支持各种平台和语言,如 IOS Android C++ Python JAVAScript Coral 等。
2) 速度很快,模型基本可以做到实时运行。
3) 模型和代码能够实现很高的复用率。
MediaPipe 缺点
1) 对于移动端, MediaPipe 略显笨重,需要至少 10M 以上的空间。
2) 深度依赖于 Tensorflow ,若想更换成其他机器学习框架,需要更改大量代码。
3) 使用的是静态图,虽然有助于提高效率,但也会导致很难发现错误。

安装更新 APT 下载列表:

sudo apt update

安装 pip

sudo apt install python3-pip

更新 pip

python3 -m pip install --upgrade pip

传输文件:

将mediapipe传输给Jetson:

文件下载:https://download.csdn.net/download/qq_64257614/88322416?spm=1001.2014.3001.5503

在jetson桌面将其拖进文件管理的home目录然后输入终端指令进行安装:

pip3 install mediapipe-0.8.5_cuda102-cp36-cp36m-linux_aarch64.whl

安装成功提示:

 

 

MediaPipe使用流程:

下图是 MediaPipe 的使用流程。其中,实线部分需要自行编写代码,虚线部分则无需编
写。 MediaPipe 内部已经集成好了 AI 相关的模型和玩法,用户可以利用 MediaPipe 来快速推
算出实现一个功能所需的框架

Mediapipe 人脸识别:

输入指令安装依赖包:

pip3 install dataclasses

编写Python程序:

import cv2
import mediapipe as mp
import timelast_time = 0
current_time = 0
fps = 0.0
def show_fps(img):global last_time, current_time, fpslast_time = current_timecurrent_time = time.time()new_fps = 1.0 / (current_time - last_time)if fps == 0.0:fps = new_fps if last_time != 0 else 0.0else:fps = new_fps * 0.2 + fps * 0.8fps_text = 'FPS: {:.2f}'.format(fps)cv2.putText(img, fps_text, (11, 20), cv2.FONT_HERSHEY_PLAIN, 1.0, (32, 32, 32), 4, cv2.LINE_AA)cv2.putText(img, fps_text, (10, 20), cv2.FONT_HERSHEY_PLAIN, 1.0, (240, 240, 240), 1, cv2.LINE_AA)return imgmp_face_detection = mp.solutions.face_detection
mp_drawing = mp.solutions.drawing_utils# For webcam input:
cap = cv2.VideoCapture(0)
with mp_face_detection.FaceDetection(min_detection_confidence=0.5) as face_detection:while cap.isOpened():success, image = cap.read()if not success:print("Ignoring empty camera frame.")# If loading a video, use 'break' instead of 'continue'.continue# To improve performance, optionally mark the image as not writeable to# pass by reference.image.flags.writeable = Falseimage = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)results = face_detection.process(image)# Draw the face detection annotations on the image.image.flags.writeable = Trueimage = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)if results.detections:for detection in results.detections:mp_drawing.draw_detection(image, detection)# Flip the image horizontally for a selfie-view display.image = show_fps(cv2.flip(image, 1))cv2.imshow('MediaPipe Face Detection', image)if cv2.waitKey(5) & 0xFF == 27:break
cap.release()

最后传输python文件,然后输入指令运行,注意放在文件夹中的需要使用cd命令进行目录的跳转

效果测试:

Mediapipe人脸识别

Mediapipe 手势识别:

 编写python程序:

import cv2
import mediapipe as mp
import numpy as np
import timelast_time = 0
current_time = 0
fps = 0.0
def show_fps(img):global last_time, current_time, fpslast_time = current_timecurrent_time = time.time()new_fps = 1.0 / (current_time - last_time)if fps == 0.0:fps = new_fps if last_time != 0 else 0.0else:fps = new_fps * 0.2 + fps * 0.8fps_text = 'FPS: {:.2f}'.format(fps)cv2.putText(img, fps_text, (11, 20), cv2.FONT_HERSHEY_PLAIN, 1.0, (32, 32, 32), 4, cv2.LINE_AA)cv2.putText(img, fps_text, (10, 20), cv2.FONT_HERSHEY_PLAIN, 1.0, (240, 240, 240), 1, cv2.LINE_AA)return imgdef distance(point_1, point_2):"""计算两个点间的距离:param point_1: 点1:param point_2: 点2:return: 两点间的距离"""return math.sqrt((point_1[0] - point_2[0]) ** 2 + (point_1[1] - point_2[1]) ** 2)def vector_2d_angle(v1, v2):"""计算两向量间的夹角 -pi ~ pi:param v1: 第一个向量:param v2: 第二个向量:return: 角度"""norm_v1_v2 = np.linalg.norm(v1) * np.linalg.norm(v2)cos = v1.dot(v2) / (norm_v1_v2)sin = np.cross(v1, v2) / (norm_v1_v2)angle = np.degrees(np.arctan2(sin, cos))return angledef get_hand_landmarks(img_size, landmarks):"""将landmarks从medipipe的归一化输出转为像素坐标:param img: 像素坐标对应的图片:param landmarks: 归一化的关键点:return:"""w, h = img_sizelandmarks = [(lm.x * w, lm.y * h) for lm in landmarks]return np.array(landmarks)def hand_angle(landmarks):"""计算各个手指的弯曲角度:param landmarks: 手部关键点:return: 各个手指的角度"""angle_list = []# thumb 大拇指angle_ = vector_2d_angle(landmarks[3] - landmarks[4], landmarks[0] - landmarks[2])angle_list.append(angle_)# index 食指angle_ = vector_2d_angle(landmarks[0] - landmarks[6], landmarks[7] - landmarks[8])angle_list.append(angle_)# middle 中指angle_ = vector_2d_angle(landmarks[0] - landmarks[10], landmarks[11] - landmarks[12])angle_list.append(angle_)# ring 无名指angle_ = vector_2d_angle(landmarks[0] - landmarks[14], landmarks[15] - landmarks[16])angle_list.append(angle_)# pink 小拇指angle_ = vector_2d_angle(landmarks[0] - landmarks[18], landmarks[19] - landmarks[20])angle_list.append(angle_)angle_list = [abs(a) for a in angle_list]return angle_listdef h_gesture(angle_list):"""通过二维特征确定手指所摆出的手势:param angle_list: 各个手指弯曲的角度:return : 手势名称字符串"""thr_angle = 65.thr_angle_thumb = 53.thr_angle_s = 49.gesture_str = "none"if (angle_list[0] > thr_angle_thumb) and (angle_list[1] > thr_angle) and (angle_list[2] > thr_angle) and (angle_list[3] > thr_angle) and (angle_list[4] > thr_angle):gesture_str = "fist"elif (angle_list[0] < thr_angle_s) and (angle_list[1] < thr_angle_s) and (angle_list[2] > thr_angle) and (angle_list[3] > thr_angle) and (angle_list[4] > thr_angle):gesture_str = "gun"elif (angle_list[0] < thr_angle_s) and (angle_list[1] > thr_angle) and (angle_list[2] > thr_angle) and (angle_list[3] > thr_angle) and (angle_list[4] > thr_angle):gesture_str = "hand_heart"elif (angle_list[0] > thr_angle_thumb) and (angle_list[1] < thr_angle_s) and (angle_list[2] > thr_angle) and (angle_list[3] > thr_angle) and (angle_list[4] > thr_angle):gesture_str = "one"elif (angle_list[0] > thr_angle_thumb) and (angle_list[1] < thr_angle_s) and (angle_list[2] < thr_angle_s) and (angle_list[3] > thr_angle) and (angle_list[4] > thr_angle):gesture_str = "two"elif (angle_list[0] > thr_angle_thumb) and (angle_list[1] < thr_angle_s) and (angle_list[2] < thr_angle_s) and (angle_list[3] < thr_angle_s) and (angle_list[4] > thr_angle):gesture_str = "three"elif (angle_list[0] > thr_angle_thumb) and (angle_list[1] > thr_angle) and (angle_list[2] < thr_angle_s) and (angle_list[3] < thr_angle_s) and (angle_list[4] < thr_angle_s):gesture_str = "ok"elif (angle_list[0] > thr_angle_thumb) and (angle_list[1] < thr_angle_s) and (angle_list[2] < thr_angle_s) and (angle_list[3] < thr_angle_s) and (angle_list[4] < thr_angle_s):gesture_str = "four"elif (angle_list[0] < thr_angle_s) and (angle_list[1] < thr_angle_s) and (angle_list[2] < thr_angle_s) and (angle_list[3] < thr_angle_s) and (angle_list[4] < thr_angle_s):gesture_str = "five"elif (angle_list[0] < thr_angle_s) and (angle_list[1] > thr_angle) and (angle_list[2] > thr_angle) and (angle_list[3] > thr_angle) and (angle_list[4] < thr_angle_s):gesture_str = "six"else:"none"return gesture_strmp_drawing = mp.solutions.drawing_utils
mp_hands = mp.solutions.hands# For webcam input:
cap = cv2.VideoCapture(0)
with mp_hands.Hands(min_detection_confidence=0.5,min_tracking_confidence=0.5) as hands:while cap.isOpened():success, image = cap.read()if not success:print("Ignoring empty camera frame.")# If loading a video, use 'break' instead of 'continue'.continue# Flip the image horizontally for a later selfie-view display, and convert# the BGR image to RGB.image = cv2.cvtColor(cv2.flip(image, 1), cv2.COLOR_BGR2RGB)# To improve performance, optionally mark the image as not writeable to# pass by reference.image.flags.writeable = Falseresults = hands.process(image)# Draw the hand annotations on the image.image.flags.writeable = Trueimage = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)gesture = "none"if results.multi_hand_landmarks:for hand_landmarks in results.multi_hand_landmarks:mp_drawing.draw_landmarks(image, hand_landmarks, mp_hands.HAND_CONNECTIONS)landmarks = get_hand_landmarks((image.shape[1], image.shape[0]), hand_landmarks.landmark)angle_list = hand_angle(landmarks)gesture = h_gesture(angle_list)if gesture != "none":break;image = show_fps(cv2.flip(image, 1))cv2.putText(image, gesture, (20, 60), cv2.FONT_HERSHEY_SIMPLEX, 1.5, (255, 0, 0), 4)cv2.imshow('MediaPipe Hands', image)if cv2.waitKey(5) & 0xFF == 27:break
cap.release()

 

 效果测试:

Mediapipe手势识别

 

http://www.zhongyajixie.com/news/996.html

相关文章:

  • 机械网站建设谷歌关键词挖掘工具
  • 网站只有一个首页单页面怎么做排名seo优化网站网页教学
  • 六安建六安建设网站软文代写费用
  • 网站建设书籍在线阅读最新新闻国内大事件
  • 网络建站 响应式网站八种营销模式
  • 教育网站建设开发软文怎么写比较吸引人
  • 东莞 网站制作杭州上城区抖音seo有多好
  • 傻瓜式一键建站系统营销培训机构哪家最专业
  • 网站官网上的新闻列表怎么做深圳最好seo
  • 手表网站建设竞价推广课程
  • 东莞南城网站开发公司怎么样创建网站
  • 深圳珠宝网站建设火星时代教育培训机构官网
  • 微信旧版本下载seoul是什么国家
  • 网站文案编辑怎么做seo模拟点击软件源码
  • 做网站找模板南宁seo公司
  • 营销型网站的目标是品牌营销策略研究
  • 做网站怎么挣钱网上售卖平台有哪些
  • 青岛网站建设方案策划日结app推广联盟
  • 做软装有什么网站找图片网络营销意思
  • 95598网站服务建设站内关键词排名优化软件
  • 小程序 开发公司自媒体seo是什么意思
  • 用vue做商城网站常用的jsgoogle chrome浏览器
  • 天津艺匠做网站怎么样京津冀协同发展
  • 做商业网站的服务费维护费泰州seo网站推广
  • 找人做seo要给网站程序推广之家app
  • 郫县做网站新闻投稿
  • 软件公司找项目seo工具包括
  • n怎样建立自己的网站百度app旧版本下载
  • 如何申请网站域名国际新闻最新消息2022
  • 贵阳网站制作免费电子商务网站设计方案