当前位置: 首页 > news >正文

四川建设主管部门网站关键词搜索热度

四川建设主管部门网站,关键词搜索热度,农业网站建设,广安市建设局网站202303-1 田地丈量&#xff08;矩阵面积交&#xff09; 矩阵面积交x轴线段交长度*y轴线段交长度 线段交长度&#xff0c;相交的时候是min右端点-max左端点&#xff0c;不相交的时候是0 #include<bits/stdc.h> using namespace std; int n,a,b,ans,x,y,x2,y2; int f(in…

202303-1 田地丈量(矩阵面积交)

矩阵面积交=x轴线段交长度*y轴线段交长度

线段交长度,相交的时候是min右端点-max左端点,不相交的时候是0

#include<bits/stdc++.h>
using namespace std;
int n,a,b,ans,x,y,x2,y2;
int f(int l1,int r1,int l,int r){return max(0,min(r1,r)-max(l1,l));
}
int main(){cin>>n>>a>>b;for(int i=1;i<=n;++i){cin>>x>>y>>x2>>y2;ans+=f(0,a,x,x2)*f(0,b,y,y2);}cout<<ans<<endl;return 0;
}

202303-2 垦田计划(二分)

二分最终答案x(x>=k),判断降到x天资源是否够

够的话就往小里二分,否则往大里二分,

当然贪心也可以做,排序之后,把最耗时的天数逐个压低,使得后缀和前面持平

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=1e5+10;
int n,m,k,t[N],c[N],mx;
bool ok(int x){ll sum=0;for(int i=1;i<=n;++i){if(t[i]<=x)continue;sum+=1ll*(t[i]-x)*c[i];if(sum>m)return 0;}return 1;
}
int main(){cin>>n>>m>>k;for(int i=1;i<=n;++i){cin>>t[i]>>c[i];mx=max(mx,t[i]);}int l=k,r=mx;while(l<=r){int mid=(l+r)/2;if(ok(mid))r=mid-1;else l=mid+1;}cout<<l<<endl;return 0;
}

202303-3 LDAP(模拟+栈+bitset)

主要是要解决表达式嵌套的问题,

与栈实现计算器时维护一个符号栈、一个数值栈类似

这里维护了两个栈,一个符号栈op,一个bitset集合栈stk,集合求交、或,由bitset完成

当遇到&或|时,将符号压栈;当遇到)时,将bitset压栈;()内正常读取,求bitset即可

当同一个符号对应两个bitset在栈内(num[c]=2)时,将两个bitset运算为一个bitset

其余部分map乱搞,q[i][j]表示DN=i用户的j属性值,

p(i,j)表示i属性值为j的有哪些用户,has[i]表示i属性有哪些用户,

i:j操作时,p[i][j]即为所求;i~j操作时,has[i]内去掉p[i][j]即为所求

to[i]记录了第i个用户对应的DN值,输出时按DN从小到大排序即可

实际耗时3s多,12s绰绰有余

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int,int> P;
const int N=2502;
int n,m,sz,id,k,c,d,x,y,num[N],to[N],f[N];
map<int,int>q[N];
map<P,vector<int>>p;
map<int,vector<int>>has;
char s[N],op[N];
bitset<N>stk[N*2],res;
bitset<N>cal(int l,char x,int r){bitset<N>ans;for(auto &v:p[P(l,r)]){ans.set(v);}if(x=='~'){for(auto &v:has[l]){ans.flip(v);}}return ans;
}
int main(){scanf("%d",&n);for(int i=1;i<=n;++i){scanf("%d%d",&id,&k);to[i]=id;for(int j=1;j<=k;++j){scanf("%d%d",&x,&y);q[i][x]=y;has[x].push_back(i);p[P(x,y)].push_back(i);}}scanf("%d",&m);for(int i=1;i<=m;++i){scanf("%s",s);sz=strlen(s);c=d=0;for(int j=0;j<sz;){if(s[j]=='&' || s[j]=='|'){op[++c]=s[j++];}else if(s[j]=='('){j++;}else if(s[j]==')'){num[c]++;if(num[c]==2){d--;if(op[c]=='&')stk[d]=stk[d]&stk[d+1];else stk[d]=stk[d]|stk[d+1];num[c--]=0;}j++;}else{int cur=j,l=0,r=0;while(cur<sz && (s[cur]!=':' && s[cur]!='~')){l=l*10+(s[cur]-'0');cur++;}char x=s[cur++];while(cur<sz && s[cur]!=')'){r=r*10+(s[cur]-'0');cur++;}stk[++d]=cal(l,x,r);j=cur;}}int e=0;for(int j=1;j<=n;++j){if(stk[d].test(j)){f[++e]=to[j];}}sort(f+1,f+e+1);for(int j=1;j<=e;++j){printf("%d%c",f[j]," \n"[j==e]);}if(!e)puts("");}return 0;
}

202303-4 星际网络II(线段树)

线段树(离散化、单点询问、区间求和、区间最值),经典题了

线段树维护区间和,用于记录对应区间几个值被用过

线段树维护最大最小值,用于记录被哪个用户id用过,

当最小值=最大值时,表示恰被一个用户用过

首先,将最大32维的数转10进制,压成长为32的array,

离散化去重后,找到每个ip地址对应下标映射

操作1:若[l,r]是否没被用户用过,或[l,r]仅被当前用户用过且没占满,则可行,否则不可行

线段树先查一下这段区间和,等于0表示没被用过,则可行

否则,判一下当前区间最大最小值,若最大最小值相等且区间和小于区间长度,则可行

操作2:单点询问,查单点最大/最小值即可知道被哪个用户用过,或没用过

操作3:区间询问,若[l,r]仅被一个用户全用过,则区间和为区间长度,区间最大最小值相等

注意离散化时,需要给右端点+1的值也离散化进去,并考虑+1带来的进位问题

否则,可能会出现[1,2][4,5]在离散化前不相邻,离散化后变为[1,2][3,4]相邻的情形

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=15e4+10,M=5e4+10,K=170,B=32,INF=0x3f3f3f3f;
struct segtree{int n;struct node{int l,r,v,c,mn,mx;}e[N<<2];#define l(p) e[p].l#define r(p) e[p].r#define v(p) e[p].v#define c(p) e[p].c#define mn(p) e[p].mn#define mx(p) e[p].mxvoid up(int p){v(p)=v(p<<1)+v(p<<1|1);mn(p)=min(mn(p<<1),mn(p<<1|1));mx(p)=max(mx(p<<1),mx(p<<1|1));}void bld(int p,int l,int r){l(p)=l;r(p)=r;c(p)=0;if(l==r){v(p)=0;mn(p)=INF;mx(p)=-INF;return;}int mid=l+r>>1;bld(p<<1,l,mid);bld(p<<1|1,mid+1,r);up(p);}void psd(int p){if(c(p)){v(p<<1)=r(p<<1)-l(p<<1)+1;mn(p<<1)=min(mn(p<<1),c(p));mx(p<<1)=max(mx(p<<1),c(p));c(p<<1)=c(p);v(p<<1|1)=r(p<<1|1)-l(p<<1|1)+1;		mn(p<<1|1)=min(mn(p<<1|1),c(p));mx(p<<1|1)=max(mx(p<<1|1),c(p));c(p<<1|1)=c(p);c(p)=0; }}void init(int _n){n=_n;bld(1,1,n);}void chg(int p,int ql,int qr,int v){if(ql>qr)return;if(ql<=l(p)&&r(p)<=qr){v(p)=r(p)-l(p)+1;mn(p)=min(mn(p),v);mx(p)=max(mx(p),v);c(p)=v;return;}psd(p);int mid=l(p)+r(p)>>1;if(ql<=mid)chg(p<<1,ql,qr,v);if(qr>mid)chg(p<<1|1,ql,qr,v);up(p);}int cnt(int p,int ql,int qr){if(ql<=l(p)&&r(p)<=qr)return v(p);int mid=l(p)+r(p)>>1,res=0;psd(p);if(ql<=mid)res+=cnt(p<<1,ql,qr);if(qr>mid)res+=cnt(p<<1|1,ql,qr);return res;}int amn(int p,int ql,int qr){if(ql<=l(p)&&r(p)<=qr)return mn(p);int mid=l(p)+r(p)>>1,res=INF;psd(p);if(ql<=mid)res=min(res,amn(p<<1,ql,qr));if(qr>mid)res=min(res,amn(p<<1|1,ql,qr));return res;}int amx(int p,int ql,int qr){if(ql<=l(p)&&r(p)<=qr)return mx(p);int mid=l(p)+r(p)>>1,res=-INF;psd(p);if(ql<=mid)res=max(res,amx(p<<1,ql,qr));if(qr>mid)res=max(res,amx(p<<1|1,ql,qr));return res;}
}seg;
int n,m,q,op,c;
array<int,B>f[N];
auto cal(string s){int d=0;array<int,B>ans={0};for(auto &y:s){if(y==':'){d++;continue;}int &v=ans[d];if('a'<=y && y<='f')v=v*16+(y-'a')+10;else v=v*16+(y-'0');}return ans;
}
auto add_one(array<int,B>y){y[n/16-1]++;for(int i=B-1;i;--i){if(y[i]>=65536){y[i]-=65536;y[i-1]++;}}return y;
}
int g(array<int,B>v){int x=lower_bound(f,f+c,v)-f;return x+1;
}
struct ask{int op,x;string s,t;void rd(){cin>>op;if(op==1)cin>>x;cin>>s;f[c++]=cal(s);if(op==2)t=s;else{cin>>t;f[c++]=cal(t);f[c]=add_one(f[c-1]);c++;}}void sol(){int l=g(cal(s)),r=g(cal(t)),w=seg.cnt(1,l,r);int mn=seg.amn(1,l,r),mx=seg.amx(1,l,r);if(op==1){if(!w || (w<r-l+1 && mn==mx && mn==x)){seg.chg(1,l,r,x);cout<<"YES"<<endl;}else{cout<<"NO"<<endl;}}else if(op==2){cout<<(mn==INF?0:mn)<<endl;}else{cout<<(w==r-l+1 && mn==mx?mn:0)<<endl;}}
}e[M];
int main(){ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);cin>>n>>q;for(int i=1;i<=q;++i){e[i].rd();}sort(f,f+c);c=unique(f,f+c)-f;seg.init(c+5);for(int i=1;i<=q;++i){e[i].sol();}return 0;
}

202303-5 施肥(分治+线段树+树状数组)

n,m<=3000乱搞一下就ok,数据范围再小的就不提了

虽然事后发现,n,m<=3000的暴力,我是用的O(nmlogn),而官解是O(n^2+nm)

特殊性质的分也比较好判断,这样75分就到手了,然后就不会了,就去嫖了官解

这个做法本质是对O(n^2+nm)的暴力套了个分治,

虽然出题人说,两个满分,分别是用李超树和分块过的,感觉很神秘

理解了好久,花若干时间写完代码之后,交上去wa成sb,

对拍拍出来问题之后,交上去又T了,把回收改成区间删除才过

复杂度O((n+m)logm)也就是一个log,但是貌似被我实现成了两个log,感谢出题人不杀之恩

开了四棵线段树,树状数组常数比较小,最后也过了,讲一下中间遇到的各个做法

60分题解(O(n^2+nm)暴力)

按右端点增序枚举,假设当前枚举到的右端点为R,此时只能选右端点<=R的线段

记a[i]为对于i来说,只能选右端点<=R的线段时,能覆盖i的最大的左端点

那么,固定右端点R时,若[L,R]是一组解,一定有对于任意L<=i<=R,L<=a[i]

换言之,为了覆盖[L,R]中间的值,采用的线段,其左端点不能比L更靠左

所以,就可以一边枚举右端点,一边将线段插入,

插入一条线段[i,R]时,涉及到一段区间a值的动态修改,本质是区间[i,R]的a值和i取max

若i<j<=R,a[j]<a[i],那么,为了覆盖区间[i,R],实际左端点也需至少取到a[j]的位置

所以,实际计算贡献的时候,需要考虑后缀对当前值的影响,

维护后缀最小值,可以搞个单调栈,也可以逐项维护

后缀的数组,实际是形如1 1 1 3 3 10 10 10 10的分段阶梯数组,

值即为左端点的值,贡献为左端点出现的种类数

#include<bits/stdc++.h>
using namespace std;
typedef pair<int,int> P;
typedef long long ll;
const int N=2e5+10;
int n,m,l,r,a[N],suf[N];
ll ans;
vector<int>f[N];
int main(){scanf("%d%d",&n,&m);for(int i=1;i<=m;++i){scanf("%d%d",&l,&r);f[r].push_back(l);}for(int i=1;i<=n;++i){for(auto &v:f[i]){for(int j=v;j<=i;++j){a[j]=max(a[j],v);}}suf[i]=a[i];ans+=(suf[i]>0);for(int j=i-1;j>=1;--j){suf[j]=min(suf[j+1],a[j]);if(suf[j]!=suf[j+1] && suf[j])ans++;}}printf("%lld\n",ans);return 0;
}

75分题解(特殊性质)

特殊性质:不存在区间的相互包含关系

就是一堆相交区间,如果把两两相交的区间合并成一个连通块,

则组成若干个连通块,且连通块内是偏序的,

一定可以选一段连续的区间,取到左区间的左端点和右区间的右端点

所以,连通块内有x个区间时,对答案的贡献是x*(x+1)/2

#include<bits/stdc++.h>
using namespace std;
typedef pair<int,int> P;
typedef long long ll;
const int N=2e5+10;
int n,m,c,mx;
vector<int>f[N],st[N];
set<int>cur;
map<P,bool>vis;
ll ans,now[N];
struct node{int l,r;
}e[N],x;
bool operator<(node a,node b){return a.r<b.r;
}
int main(){scanf("%d%d",&n,&m);for(int i=1;i<=m;++i){scanf("%d%d",&x.l,&x.r);//e[++c]=x;if(!vis[P(x.l,x.r)])e[++c]=x;vis[P(x.l,x.r)]=1;}m=c;sort(e+1,e+m+1);if(n>3000){for(int i=1;i<=m;){int j=i,mx=e[j].r;while(j+1<=m && e[j+1].l<=mx+1){j++;mx=max(mx,e[j].r);}int sz=j-i+1;ans+=1ll*sz*(sz+1)/2;i=j+1;}printf("%lld\n",ans);}else{for(int i=1;i<=m;++i){st[e[i].l].push_back(e[i].r);}for(int i=1;i<=n;++i){if(st[i].empty())continue;cur.clear();for(auto &v:st[i])cur.insert(v);for(int j=1;j<=m;++j){if(e[j].l<i)continue;if(cur.lower_bound(e[j].l-1)!=cur.end()){int x=*cur.lower_bound(e[j].l-1);if(x<=e[j].r)cur.insert(e[j].r);}}ans+=cur.size();}printf("%lld\n",ans);}return 0;
}

100分题解(分治+线段树+树状数组)

官解里有提到并查集维护区间并,没太想明白,所以开了四棵线段树

分治之后,左区间[l,mid],右区间[mid+1,r],

考虑如何统计跨左右区间的答案,即满足l<=L<=mid且mid+1<=R<=r的(L,R)答案

先定义点术语,方便下面描述:

左半区间:[l,mid]

右半区间:[mid+1,r]

左内区间:被完整包含于[l,mid]内的区间

右内区间:被完整包含于[mid+1,r]内的区间

跨域区间:左端点位于[l,mid],右端点位于[mid+1,r]的区间

从x走到y:存在一个区间[x,y],或存在若干个区间覆盖在一起,使得左端点是x,右端点y

若(L,R)合法, 换言之,从左端点L走到右端点R,有两种情况,

1. 存在跨域区间[L,R],一步从L走到R

2. ①L通过左内区间走若干步,走到[l,mid]内最靠右的位置,记为a[L]

②对称后,是相遇问题,R通过右内区间走若干步,走到[mid+1,r]最靠左的位置,记为a[R]

③L通过一个跨域区间(跨域区间左端点在[L,a[L]+1]内),走到[mid+1,r]内最靠左位置,记为b[L]

④R通过一个跨域区间(跨域区间右端点在[a[R]-1,R]内),走到[l,mid]内最靠右位置,记为b[R]

⑤[L,b[L]]和[b[R],R]两个区间,需要满足覆盖在一起后是[L,R],

因为,b[L]<=mid<mid+1<=b[R],所以,区间相交是自然满足的 

还需满足b[L]<=R且L<=b[R],这是一个静态二维数点问题,可用树状数组或cdq分治解决

①-②步用了一棵线段树seg,区间查询,单点更新

左半边递减遍历维护最大值,右半边递增遍历维护最小值

③用了一棵线段树lseg,单点更新,维护左端点在[l,mid+1]内,右端点在右半区间的右端点最小值

④用了一棵线段树rseg,单点更新,维护右端点在[mid,r]内,左端点在左半区间的左端点最大值

[l,mid+1]是因为[L,a[L]+1],比如,[1,2]和[3,4]也可以覆盖[1,4];[mid,r]同理

因为③④区间有交集,且和①②维护的信息不同,所以各开了一棵线段树

外层已经是分治了,内层就不cdq分治了,⑤这里采用树状数组的方式解决

形如(L,b[L])和(b[R],R)的二维点对,按第一维排增序,

第一维相同时,先插入再查询,左半边插入到b[L]位置,右半边查询区间[b[R],R]

由于b[R]<=mid<b[L]恒成立,所以直接查sum(R)就可以

此外,注意到1和2的①②③④的情况,都不一定存在,所以需要分别判一下不存在的情况,

当然,如果用INF和-INF配合max min之后,能统一写法的话最好

分治为了使复杂度正确,每次使用完线段树之后需要手动回收,

对树状数组手动-1,撤销操作;对线段树[l,r]段区间删除打标记,

由于维护的是最大最小值,删除后,最大值为-INF,最小值为INF

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
#define SZ(x) (int)x.size()
#define fi first
#define se second
const int N=2e5+10,INF=0x3f3f3f3f;
int n,m,l,r,a[N],b[N];
vector<int>L[N],R[N];
ll ans;
struct segtree{int n;struct node{int l,r,c,mn,mx;}e[N<<2];#define l(p) e[p].l#define r(p) e[p].r#define c(p) e[p].c#define mn(p) e[p].mn#define mx(p) e[p].mxvoid up(int p){mn(p)=min(mn(p<<1),mn(p<<1|1));mx(p)=max(mx(p<<1),mx(p<<1|1));}void bld(int p,int l,int r){l(p)=l;r(p)=r;c(p)=0;if(l==r){mn(p)=INF;mx(p)=-INF;return;}int mid=l+r>>1;bld(p<<1,l,mid);bld(p<<1|1,mid+1,r);up(p);}void init(int _n){n=_n;bld(1,1,n);}void chg(int p,int x,int v){if(l(p)==r(p)){mn(p)=min(mn(p),v);mx(p)=max(mx(p),v);return;}int mid=l(p)+r(p)>>1;psd(p);chg(p<<1|(x>mid),x,v);up(p);}void psd(int p){if(c(p)){mn(p<<1)=INF;mx(p<<1)=-INF;c(p<<1)=c(p);mn(p<<1|1)=INF;mx(p<<1|1)=-INF;c(p<<1|1)=c(p);c(p)=0; }}void del(int p,int ql,int qr){if(ql<=l(p)&&r(p)<=qr){mn(p)=INF;mx(p)=-INF;c(p)=1;return;}psd(p);int mid=l(p)+r(p)>>1;if(ql<=mid)del(p<<1,ql,qr);if(qr>mid)del(p<<1|1,ql,qr);up(p);}int amn(int p,int ql,int qr){if(ql<=l(p)&&r(p)<=qr)return mn(p);int mid=l(p)+r(p)>>1,res=INF;psd(p);if(ql<=mid)res=min(res,amn(p<<1,ql,qr));if(qr>mid)res=min(res,amn(p<<1|1,ql,qr));return res;}int amx(int p,int ql,int qr){if(ql<=l(p)&&r(p)<=qr)return mx(p);int mid=l(p)+r(p)>>1,res=-INF;psd(p);if(ql<=mid)res=max(res,amx(p<<1,ql,qr));if(qr>mid)res=max(res,amx(p<<1|1,ql,qr));return res;}
}seg,lseg,rseg;
struct BitPre{int n,tr[N];void init(int _n){n=_n;memset(tr,0,(n+1)*sizeof(*tr));}void add(int x,int v){for(int i=x;i<=n;i+=i&-i)tr[i]+=v;}int ask(int x){if(x<0)return 0;int ans=0; for(int i=x;i;i-=i&-i)ans+=tr[i];return ans;}
}tr;
bool ok(int x){return x!=INF && x!=-INF;
}
bool in(int x,int l,int r){return l<=x && x<=r;
}
void cdq(int l,int r){if(l==r)return;int mid=(l+r)/2;cdq(l,mid);cdq(mid+1,r);for(int i=mid;i>=l;--i){a[i]=-INF;b[i]=INF;for(auto &v:L[i]){if(v>r)continue;if(v<=mid)a[i]=max(a[i],v);else b[i]=min(b[i],v);//有无需本侧的情况if(v>=mid)rseg.chg(1,v,i);}if(ok(a[i])){a[i]=max(a[i],seg.amx(1,i,min(mid,a[i]+1)));seg.chg(1,i,a[i]);}}for(int i=mid+1;i<=r;++i){a[i]=INF;b[i]=-INF;for(auto &v:R[i]){if(v<l)continue;if(v>=mid+1)a[i]=min(a[i],v);else b[i]=max(b[i],v);if(v<=mid+1)lseg.chg(1,v,i);}if(ok(a[i])){a[i]=min(a[i],seg.amn(1,max(mid+1,a[i]-1),i));seg.chg(1,i,a[i]);}}vector<array<int,3>>all;for(int i=mid;i>=l;--i){if(ok(a[i])){ // [i,a[i]+1]int v=lseg.amn(1,i,a[i]+1);if(in(v,mid+1,r)){b[i]=min(b[i],v);}}if(in(b[i],mid+1,r))all.push_back({i,0,b[i]});}for(int i=mid+1;i<=r;++i){if(ok(a[i])){ // [a[i]-1,i]int v=rseg.amx(1,a[i]-1,i);if(in(v,l,mid)){b[i]=max(b[i],v);}}if(in(b[i],l,mid))all.push_back({b[i],1,i});}sort(all.begin(),all.end());for(auto &w:all){int op=w[1],ub=w[2];if(op==0)tr.add(ub,1);else ans+=tr.ask(ub);//左[l,a[l]]右[a[r],r],满足l<=a[r]<=a[l]+1且a[r]-1<=a[l]<=r,a[l]<=mid<mid+1<=a[r]显然成立}seg.del(1,l,r);lseg.del(1,l,r);rseg.del(1,l,r);for(auto &w:all){int op=w[1],ub=w[2];if(op==0)tr.add(ub,-1);}
}
int main(){scanf("%d%d",&n,&m);seg.init(n);lseg.init(n);rseg.init(n);tr.init(n);for(int i=1;i<=m;++i){scanf("%d%d",&l,&r);//重复无所谓L[l].push_back(r);R[r].push_back(l);}cdq(1,n);printf("%lld\n",ans);return 0;
}
/*
9 4
1 4
1 8
3 9
2 5
*/

写在最后

感觉数据结构有点多了,写起来比较疲惫

四五题连放两个数据结构,有点不太像之前csp的风格

反观之前的第三题大模拟,本次变成中模拟了

anyway,完结, 撒花!


文章转载自:
http://epileptoid.c7512.cn
http://billabong.c7512.cn
http://fatwitted.c7512.cn
http://resegregate.c7512.cn
http://achromatize.c7512.cn
http://climacteric.c7512.cn
http://patio.c7512.cn
http://blanquism.c7512.cn
http://brook.c7512.cn
http://neutralist.c7512.cn
http://nomenclative.c7512.cn
http://perspiratory.c7512.cn
http://prau.c7512.cn
http://corvina.c7512.cn
http://smithwork.c7512.cn
http://prickspur.c7512.cn
http://sternmost.c7512.cn
http://pyrotechnical.c7512.cn
http://pharmaceutic.c7512.cn
http://cubism.c7512.cn
http://ripsonrt.c7512.cn
http://ozonesonde.c7512.cn
http://rhinestone.c7512.cn
http://nonpolicy.c7512.cn
http://aiwa.c7512.cn
http://hypotrophy.c7512.cn
http://tempi.c7512.cn
http://preclude.c7512.cn
http://clerically.c7512.cn
http://firedrake.c7512.cn
http://percentage.c7512.cn
http://livelihood.c7512.cn
http://chainsaw.c7512.cn
http://graveclothes.c7512.cn
http://extramarital.c7512.cn
http://pitchpole.c7512.cn
http://noted.c7512.cn
http://dahalach.c7512.cn
http://brasserie.c7512.cn
http://kyphoscoliosis.c7512.cn
http://spig.c7512.cn
http://schwarz.c7512.cn
http://podalic.c7512.cn
http://jama.c7512.cn
http://virtuosity.c7512.cn
http://terribly.c7512.cn
http://emulsification.c7512.cn
http://diffraction.c7512.cn
http://kythe.c7512.cn
http://detribalize.c7512.cn
http://coldbloodedly.c7512.cn
http://meccano.c7512.cn
http://swart.c7512.cn
http://vidifont.c7512.cn
http://occupation.c7512.cn
http://impugn.c7512.cn
http://gammasonde.c7512.cn
http://arachnid.c7512.cn
http://cimex.c7512.cn
http://debe.c7512.cn
http://foss.c7512.cn
http://alleyway.c7512.cn
http://clearweed.c7512.cn
http://damnify.c7512.cn
http://intangibly.c7512.cn
http://biotechnics.c7512.cn
http://anemography.c7512.cn
http://vocal.c7512.cn
http://septangle.c7512.cn
http://hothead.c7512.cn
http://closedown.c7512.cn
http://heptasyllabic.c7512.cn
http://rascal.c7512.cn
http://insuperably.c7512.cn
http://edgy.c7512.cn
http://peritectoid.c7512.cn
http://lightwave.c7512.cn
http://nickelize.c7512.cn
http://narcissus.c7512.cn
http://sigmoid.c7512.cn
http://pulmonary.c7512.cn
http://realign.c7512.cn
http://accommodative.c7512.cn
http://succursal.c7512.cn
http://decharge.c7512.cn
http://logginess.c7512.cn
http://smokeproof.c7512.cn
http://stymie.c7512.cn
http://vicarage.c7512.cn
http://hydrobomb.c7512.cn
http://hg.c7512.cn
http://accusatival.c7512.cn
http://resilient.c7512.cn
http://swansdown.c7512.cn
http://verandah.c7512.cn
http://pakeha.c7512.cn
http://abhorrent.c7512.cn
http://anticolonial.c7512.cn
http://militarization.c7512.cn
http://sulphydryl.c7512.cn
http://www.zhongyajixie.com/news/91120.html

相关文章:

  • 外贸公司网站建设方案seo网络优化师招聘
  • b2b商场网站建设淘宝关键词搜索排名
  • 网站改版后的推广办法线上营销课程
  • wordpress wpnavmenu小红书seo排名规则
  • 什么是网站版式南宁seo全网营销
  • 制作网页csdn怀来网站seo
  • 个人网站备案网站名称app软件开发
  • 想在意大利做购物网站百度网址大全下载到桌面
  • 寮步镇网站仿做seo优缺点
  • 新手做网站做那个百度竞价推广点击软件奔奔
  • 心理网站免费建设网站推广优化是什么意思
  • DW做网站下拉列表怎么做网站推广渠道
  • 网页制作工具常见的有java快速排名优化系统
  • 低代码开发平台哪个最好小时seo百度关键词点击器
  • 专业建站公司费用电商网络推广是什么
  • 做欧美贸易的主要有哪些网站市场调研报告怎么写的
  • web程序员自己做网站网络营销策略的概念
  • 聊城冠县网站建设推广渠道
  • 办公室装修专业网站青岛设计优化公司
  • 雄安建站服务百度关键词排名工具
  • cc彩球网站总代理怎么做最经典的营销案例
  • php做网站搜索框磁力岛引擎
  • 聊城手机网站制作谷歌google官网下载
  • 做国际贸易如何建网站网站制作公司怎么样
  • 晋城市住房城乡建设局网站怎样把广告放到百度
  • 北京建设网站图片东莞网站推广公司黄页
  • 桐城网站定制江西优化中心
  • 福州市官网搜狗首页排名优化
  • 什么网站是html5做的知乎seo排名帝搜软件
  • 哪个网络公司做网站好济南网站建设哪家好