当前位置: 首页 > news >正文

仿网站百度会怎么做江西seo推广方案

仿网站百度会怎么做,江西seo推广方案,党建设计素材网站,江西建设工程质量管理网站学习目标 知道df添加新列的操作 知道insert函数插入列数据 知道drop函数删除df的行或列数据 知道drop_duplicates函数对df或series进行数据去重 知道unique函数对series进行数据去重 知道apply函数的使用方法 1 DataFrame添加列 注意:本文用到的数据集在文章顶部 1.1 直…

学习目标

  • 知道df添加新列的操作

  • 知道insert函数插入列数据

  • 知道drop函数删除df的行或列数据

  • 知道drop_duplicates函数对df或series进行数据去重

  • 知道unique函数对series进行数据去重

  • 知道apply函数的使用方法

1 DataFrame添加列

注意:本文用到的数据集在文章顶部

1.1 直接赋值添加列数据

通过 df[列名]=新值df[列名]=series对象/list对象 添加新的一列, 新列添加到df的最后

  • 添加列名为 城市 的一列, 值都为北京

    import pandas as pd
    ​
    # 加载数据集
    df = pd.read_csv('../data/LJdata.csv')
    ​
    # 获取前5条数据并复制一份
    temp_df = df.head().copy()
    ​
    # 添加一列数据都是固定值
    temp_df['省份'] = '北京'
    print(temp_df)
    ​
    # 输出结果如下区域          地址    户型  面积  价格  朝向    更新时间  看房人数  城市
    0    燕莎租房        新源街  2室1厅    50  5800    南  2017.07.21        26  北京
    1    望京租房      澳洲康都  2室1厅    79  7800    东  2017.07.23        33  北京
    2  广安门租房      远见名苑  2室1厅    86  8000    东  2017.07.20        34  北京
    3  天通苑租房  天通苑北一区  2室1厅   103  5300  东南  2017.07.25        30  北京
    4  团结湖租房    团结湖北口  2室1厅    63  6400    南  2017.07.26        30  北京

  • 添加列名为 区县 的一列, 值分别是 朝阳区、朝阳区、西城区、昌平区、朝阳区

    # 列表的数据数量必须和df的行数相等
    temp_df['区县'] = ['朝阳区', '朝阳区', '西城区', '昌平区', '朝阳区']
    print(temp_df)
    ​
    # 输出结果如下区域          地址    户型  面积  价格  朝向    更新时间  看房人数  省份    区县
    0    燕莎租房        新源街  2室1厅    50  5800    南  2017.07.21        26  北京  朝阳区
    1    望京租房      澳洲康都  2室1厅    79  7800    东  2017.07.23        33  北京  朝阳区
    2  广安门租房      远见名苑  2室1厅    86  8000    东  2017.07.20        34  北京  西城区
    3  天通苑租房  天通苑北一区  2室1厅   103  5300  东南  2017.07.25        30  北京  昌平区
    4  团结湖租房    团结湖北口  2室1厅    63  6400    南  2017.07.26        30  北京  朝阳区

  • 添加列名为 新价格 的一列, 值比原价格列的值多1000元

    # 新增数据为series对象
    # print(temp_df['价格'] + 1000)
    temp_df['新价格'] = temp_df['价格'] + 1000
    print(temp_df)
    ​
    # 输出结果如下区域          地址    户型  面积  价格  ...    更新时间 看房人数  省份    区县 新价格
    0    燕莎租房        新源街  2室1厅    50  5800  ...  2017.07.21       26  北京  朝阳区   6800
    1    望京租房      澳洲康都  2室1厅    79  7800  ...  2017.07.23       33  北京  朝阳区   8800
    2  广安门租房      远见名苑  2室1厅    86  8000  ...  2017.07.20       34  北京  西城区   9000
    3  天通苑租房  天通苑北一区  2室1厅   103  5300  ...  2017.07.25       30  北京  昌平区   6300
    4  团结湖租房    团结湖北口  2室1厅    63  6400  ...  2017.07.26       30  北京  朝阳区   7400

1.2 insert函数添加列数据

通过 df.insert(loc=,column=,value=) 方法在指定位置添加列

loc: 指定列位置下标数字

column: 添加列的列名

value: 添加列的所有值, series对象、列表对象、常数等

  • 在区域列后添加列名为 城市 的一列, 值都为北京

    # 获取前5条数据
    new_df = df.head().copy()
    print(new_df)
    new_df.insert(loc=1, column='城市', value='北京')
    print(new_df)
    ​
    # 输出结果如下区域          地址    户型  面积  价格  朝向    更新时间  看房人数
    0    燕莎租房        新源街  2室1厅    50  5800    南  2017.07.21        26
    1    望京租房      澳洲康都  2室1厅    79  7800    东  2017.07.23        33
    2  广安门租房      远见名苑  2室1厅    86  8000    东  2017.07.20        34
    3  天通苑租房  天通苑北一区  2室1厅   103  5300  东南  2017.07.25        30
    4  团结湖租房    团结湖北口  2室1厅    63  6400    南  2017.07.26        30区域  城市          地址    户型  面积  价格  朝向    更新时间  看房人数
    0    燕莎租房  北京        新源街  2室1厅    50  5800    南  2017.07.21        26
    1    望京租房  北京      澳洲康都  2室1厅    79  7800    东  2017.07.23        33
    2  广安门租房  北京      远见名苑  2室1厅    86  8000    东  2017.07.20        34
    3  天通苑租房  北京  天通苑北一区  2室1厅   103  5300  东南  2017.07.25        30
    4  团结湖租房  北京    团结湖北口  2室1厅    63  6400    南  2017.07.26        30

  • 在城市列后添加列名为 区县 的一列, 值分别是 朝阳区、朝阳区、西城区、昌平区、朝阳区

    new_df.insert(loc=2, column='区县', value=['朝阳区', '朝阳区', '西城区', '昌平区', '朝阳区'])
    print(new_df)
    ​
    # 输出结果如下区域  城市    区县          地址    户型  面积  价格  朝向    更新时间  看房人数
    0    燕莎租房  北京  朝阳区        新源街  2室1厅    50  5800    南  2017.07.21        26
    1    望京租房  北京  朝阳区      澳洲康都  2室1厅    79  7800    东  2017.07.23        33
    2  广安门租房  北京  西城区      远见名苑  2室1厅    86  8000    东  2017.07.20        34
    3  天通苑租房  北京  昌平区  天通苑北一区  2室1厅   103  5300  东南  2017.07.25        30
    4  团结湖租房  北京  朝阳区    团结湖北口  2室1厅    63  6400    南  2017.07.26        30

  • 在价格列后添加列名为 新价格 的一列, 值比原价格列的值多1000元

    pd.set_option('display.max_columns', None)  # 展示所有列
    pd.set_option('display.width', None)  # 不换行显示
    new_df.insert(loc=7, column='新价格', value=new_df['价格'] + 1000)
    print(new_df)
    ​
    # 输出结果如下区域  城市    区县          地址    户型  面积  价格  新价格  朝向    更新时间  看房人数
    0    燕莎租房  北京  朝阳区        新源街  2室1厅    50  5800    6800    南  2017.07.21        26
    1    望京租房  北京  朝阳区      澳洲康都  2室1厅    79  7800    8800    东  2017.07.23        33
    2  广安门租房  北京  西城区      远见名苑  2室1厅    86  8000    9000    东  2017.07.20        34
    3  天通苑租房  北京  昌平区  天通苑北一区  2室1厅   103  5300    6300  东南  2017.07.25        30
    4  团结湖租房  北京  朝阳区    团结湖北口  2室1厅    63  6400    7400    南  2017.07.26        30

2 DataFrame删除行列

通过 df.drop(labels=, axis=, inplace=) 方法删除行列数据

labels: 行索引值或列名列表

axis: 删除行->0或index, 删除列->1或columns, 默认0

inplace: TrueFalse, 是否在原数据上删除, 默认False

# 删除一行数据, 原df上并没有删除
print(temp_df.drop(labels=[0]))
​
# 删除多行数据, 原df上删除
temp_df.drop(labels=[0, 2, 4], axis='index', inplace=True)
print(temp_df)
​
# 删除一列数据, 原df上并没有删除
print(temp_df.drop(labels=['新价格'], axis=1))
​
# 删除多列数据, 原df上删除
temp_df.drop(labels=['新价格', '区县', '省份'], axis='columns', inplace=True)
print(temp_df)
​
# 输出结果如下区域          地址    户型  面积  价格  ...    更新时间 看房人数  省份    区县 新价格
1    望京租房      澳洲康都  2室1厅    79  7800  ...  2017.07.23       33  北京  朝阳区   8800
2  广安门租房      远见名苑  2室1厅    86  8000  ...  2017.07.20       34  北京  西城区   9000
3  天通苑租房  天通苑北一区  2室1厅   103  5300  ...  2017.07.25       30  北京  昌平区   6300
4  团结湖租房    团结湖北口  2室1厅    63  6400  ...  2017.07.26       30  北京  朝阳区   7400
​
[4 rows x 11 columns]区域          地址    户型  面积  价格  ...    更新时间 看房人数  省份    区县 新价格
1    望京租房      澳洲康都  2室1厅    79  7800  ...  2017.07.23       33  北京  朝阳区   8800
3  天通苑租房  天通苑北一区  2室1厅   103  5300  ...  2017.07.25       30  北京  昌平区   6300
​
[2 rows x 11 columns]区域          地址    户型  面积  价格  朝向    更新时间  看房人数  省份    区县
1    望京租房      澳洲康都  2室1厅    79  7800    东  2017.07.23        33  北京  朝阳区
3  天通苑租房  天通苑北一区  2室1厅   103  5300  东南  2017.07.25        30  北京  昌平区区域          地址    户型  面积  价格  朝向    更新时间  看房人数
1    望京租房      澳洲康都  2室1厅    79  7800    东  2017.07.23        33
3  天通苑租房  天通苑北一区  2室1厅   103  5300  东南  2017.07.25        30

3 Series或DataFrame数据去重

通过 <s/df>.drop_duplicates(subset=,keep=,inplace=) 方法对数据去重

subset: df的参数, 传入列名列表, 对指定列进行去重, 不写此参数默认对所有列进行去重

keep: 保留哪条重复数据, first->保留第一条, last->保留最后一条, False->都不保留, 默认first

inplace: TrueFalse, 是否在原数据上去重, 默认False

  • DataFrame数据去重 duplicates

    temp_df = df.head().copy()
    ​
    # 对df所有列去重, 当前df没有重复的行数据
    print(temp_df.drop_duplicates())
    # 根据指定列对df去重, 默认保留第一条数据
    # 第1行和第5行、第2行和第3行重复
    print(temp_df.drop_duplicates(subset=['户型', '朝向']))
    # 保留最后一条数据
    # print(temp_df.drop_duplicates(subset=['户型', '朝向'], keep='last'))
    # 重复数据都不保留
    # print(temp_df.drop_duplicates(subset=['户型', '朝向'], keep=False))
    ​
    # 输出结果如下区域          地址    户型  面积  价格  朝向    更新时间  看房人数
    0    燕莎租房        新源街  2室1厅    50  5800    南  2017.07.21        26
    1    望京租房      澳洲康都  2室1厅    79  7800    东  2017.07.23        33
    2  广安门租房      远见名苑  2室1厅    86  8000    东  2017.07.20        34
    3  天通苑租房  天通苑北一区  2室1厅   103  5300  东南  2017.07.25        30
    4  团结湖租房    团结湖北口  2室1厅    63  6400    南  2017.07.26        30区域          地址    户型  面积  价格  朝向    更新时间  看房人数
    0    燕莎租房        新源街  2室1厅    50  5800    南  2017.07.21        26
    1    望京租房      澳洲康都  2室1厅    79  7800    东  2017.07.23        33
    3  天通苑租房  天通苑北一区  2室1厅   103  5300  东南  2017.07.25        30

  • Series数据去重

    print('-------------去重之后返回Series对象--------------------')
    # 默认保留第一条数据
    print(temp_df['朝向'].drop_duplicates())
    # 保留最后一条数据
    print(temp_df['朝向'].drop_duplicates(keep='last'))
    # 重复数据都不保留
    print(temp_df['朝向'].drop_duplicates(keep=False))
    ​
    print('-------------去重之后返回数组--------------------')
    # series对象还可以使用unique函数去重, 返回ndarray数组
    print(temp_df['朝向'].unique())
    # nunique函数实现去重计数操作, 类似 count(distinct)
    print(temp_df['朝向'].nunique())
    ​
    # 输出结果如下
    0      南
    1      东
    3    东南
    Name: 朝向, dtype: object
    2      东
    3    东南
    4      南
    Name: 朝向, dtype: object
    3    东南
    Name: 朝向, dtype: object
    ['南' '东' '东南']
    3

4 Series或DataFrame数据修改

4.1 直接修改数据

通过 df[列名]=新值s[行索引]=新值 修改数据

# 获取前5条数据并复制一份
temp_df = df.head().copy()
​
# 获取价格列, 得到series对象, 复制一份数据
s1 = temp_df['价格'].copy()
print(s1)
​
# series修改数据
s1[0] = 7000
print(s1)
​
# dataframe修改数据, 列表数据数量要和行数相等
temp_df['价格'] = [6800, 8800, 9000, 6300, 6400]
print(temp_df)
​
# 输出结果如下
0    5800
1    7800
2    8000
3    5300
4    6400
Name: 价格, dtype: int64
0    7000
1    7800
2    8000
3    5300
4    6400
Name: 价格, dtype: int64区域          地址    户型  面积  价格  朝向    更新时间  看房人数
0    燕莎租房        新源街  2室1厅    50  6800    南  2017.07.21        26
1    望京租房      澳洲康都  2室1厅    79  8800    东  2017.07.23        33
2  广安门租房      远见名苑  2室1厅    86  9000    东  2017.07.20        34
3  天通苑租房  天通苑北一区  2室1厅   103  6300  东南  2017.07.25        30
4  团结湖租房    团结湖北口  2室1厅    63  6400    南  2017.07.26        30

4.2 replace函数替换数据

通过 <s/df>.replace(to_replace=, value=, inplace=) 方法替换数据

to_replace: 需要替换的数据

value: 替换后的数据

inplace: TrueFalse, 是否在原数据上替换, 默认False

# 获取前5条数据并复制一份
temp_df = df.head().copy()
​
# 替换series的数据
print(temp_df['价格'].replace(to_replace=5300, value=6000))
​
temp_df['朝向'].replace('东南', '西', inplace=True)
print(temp_df)
​
# 替换dataframe的数据
print(temp_df.replace(to_replace='2室1厅', value='3室2厅'))
​
# 输出结果如下
0    5800
1    7800
2    8000
3    6000
4    6400
Name: 价格, dtype: int64区域          地址    户型  面积  价格 朝向    更新时间  看房人数
0    燕莎租房        新源街  2室1厅    50  5800   南  2017.07.21        26
1    望京租房      澳洲康都  2室1厅    79  7800   东  2017.07.23        33
2  广安门租房      远见名苑  2室1厅    86  8000   东  2017.07.20        34
3  天通苑租房  天通苑北一区  2室1厅   103  5300   西  2017.07.25        30
4  团结湖租房    团结湖北口  2室1厅    63  6400   南  2017.07.26        30区域          地址    户型  面积  价格 朝向    更新时间  看房人数
0    燕莎租房        新源街  3室2厅    50  5800   南  2017.07.21        26
1    望京租房      澳洲康都  3室2厅    79  7800   东  2017.07.23        33
2  广安门租房      远见名苑  3室2厅    86  8000   东  2017.07.20        34
3  天通苑租房  天通苑北一区  3室2厅   103  5300   西  2017.07.25        30
4  团结湖租房    团结湖北口  3室2厅    63  6400   南  2017.07.26        30

4.3执行自定义函数修改数据

有时需要我们对df或s对象中的数据做更加精细化的修改动作,并将修改操作封装成为一个自定义的函数;这时我们就可以利用<s/df>.apply(函数名)来调用我们自定义的函数

s或df对象可以借助apply函数执行自定义函数, 内置函数无法处理需求时就需要使用自定义函数来处理

4.3.1s.apply()函数遍历每一个值同时执行自定义函数
  • Series对象使用apply调用自定义的函数,返回新的Series对象

    # 加载数据集
    df = pd.read_csv('../data/LJdata.csv')
    # 获取前5条数据并复制一份
    temp_df = df.head().copy()
    ​
    ​
    # 自定义函数, 最少接收一个参数
    def func(x):# x此时是s对象中一个数据值:燕莎租房、望京租房print('x的值是->', x)# 本自定义函数返回的也是一个数据if x == '天通苑租房':return '昌平区'return x
    ​
    ​
    temp_df['区域'] = temp_df['区域'].apply(func)
    print(temp_df)
    ​
    # 输出结果如下
    x的值是-> 燕莎租房
    x的值是-> 望京租房
    x的值是-> 广安门租房
    x的值是-> 天通苑租房
    x的值是-> 团结湖租房区域          地址    户型  面积  价格  朝向    更新时间  看房人数
    0    燕莎租房        新源街  2室1厅    50  5800    南  2017.07.21        26
    1    望京租房      澳洲康都  2室1厅    79  7800    东  2017.07.23        33
    2  广安门租房      远见名苑  2室1厅    86  8000    东  2017.07.20        34
    3      昌平区  天通苑北一区  2室1厅   103  5300  东南  2017.07.25        30
    4  团结湖租房    团结湖北口  2室1厅    63  6400    南  2017.07.26        30
  • Series对象使用apply调用自定义的函数,并向自定义函数中传入其他参数

    # 获取前5条数据
    temp_df = df.head().copy()
    ​
    ​
    # 自定义函数, 最少接收一个参数
    def func(x, arg1, arg2):# x此时是s对象中一个数据print('x的值是->', x)# 本自定义函数返回的也是一个数据if x == '天通苑租房':return arg1return arg2
    ​
    ​
    # args: 传入其他参数值, 元组类型
    temp_df['区域'] = temp_df['区域'].apply(func, args=('昌平区', '其他区'))
    ​
    # apply中其他参数名和自定义函数中其他形参名相同
    # temp_df['区域'] = temp_df['区域'].apply(func1, arg1='昌平区', arg2='其他区')
    print(temp_df)
    ​
    # 输出结果如下
    x的值是-> 燕莎租房
    x的值是-> 望京租房
    x的值是-> 广安门租房
    x的值是-> 天通苑租房
    x的值是-> 团结湖租房区域          地址    户型  面积  价格  朝向    更新时间  看房人数
    0  其他区        新源街  2室1厅    50  5800    南  2017.07.21        26
    1  其他区      澳洲康都  2室1厅    79  7800    东  2017.07.23        33
    2  其他区      远见名苑  2室1厅    86  8000    东  2017.07.20        34
    3  昌平区  天通苑北一区  2室1厅   103  5300  东南  2017.07.25        30
    4  其他区    团结湖北口  2室1厅    63  6400    南  2017.07.26        30

4.3.2 df.apply()函数遍历每一行/列同时执行自定义函数
# 获取前5条数据
temp_df = df.head().copy()
print(temp_df)
​
​
def func1(s, arg1):# 此时s参数就是df中的一列数据, s对象# print('s的值是->', s)# print('s的类型是->', type(s))# 本自定义函数也必须返回一列数据, s对象# print(s.__dict__)if s._name == '价格':return s + arg1else:return s
​
# 默认遍历df每列, axis=0
print(temp_df.apply(func1, args=(1000,), axis=0))
​
​
def func2(s, arg1):# 此时s参数就是df中的一行数据, s对象# print('s的值是->', s)# print('s的类型是->', type(s))# 本自定义函数也必须返回一列数据, s对象# print(s.__dict__)if s['区域'] == '天通苑租房':# 修改价格对应的值s['价格'] = s['价格'] + arg1return selse:return s
​
​
​
# 遍历df每行, axis=1
print(temp_df.apply(func2, arg1=1000, axis=1))
​
# 输出结果如下区域          地址    户型  面积  价格  朝向    更新时间  看房人数
0    燕莎租房        新源街  2室1厅    50  5800    南  2017.07.21        26
1    望京租房      澳洲康都  2室1厅    79  7800    东  2017.07.23        33
2  广安门租房      远见名苑  2室1厅    86  8000    东  2017.07.20        34
3  天通苑租房  天通苑北一区  2室1厅   103  5300  东南  2017.07.25        30
4  团结湖租房    团结湖北口  2室1厅    63  6400    南  2017.07.26        30区域          地址    户型  面积  价格  朝向    更新时间  看房人数
0    燕莎租房        新源街  2室1厅    50  6800    南  2017.07.21        26
1    望京租房      澳洲康都  2室1厅    79  8800    东  2017.07.23        33
2  广安门租房      远见名苑  2室1厅    86  9000    东  2017.07.20        34
3  天通苑租房  天通苑北一区  2室1厅   103  6300  东南  2017.07.25        30
4  团结湖租房    团结湖北口  2室1厅    63  7400    南  2017.07.26        30区域          地址    户型  面积  价格  朝向    更新时间  看房人数
0    燕莎租房        新源街  2室1厅    50  5800    南  2017.07.21        26
1    望京租房      澳洲康都  2室1厅    79  7800    东  2017.07.23        33
2  广安门租房      远见名苑  2室1厅    86  8000    东  2017.07.20        34
3  天通苑租房  天通苑北一区  2室1厅   103  6300  东南  2017.07.25        30
4  团结湖租房    团结湖北口  2室1厅    63  6400    南  2017.07.26        30
4.3.3 df.applymap()函数遍历每一个值同时执行自定义函数
# 获取前5条数据
temp_df = df.head().copy()
print(temp_df)
​
​
# 自定义函数只能接收一个参数
def func(x):# 此时x参数就是df中的每个数据# print('x的值是->', x)# 本自定义函数也必须返回一个数据if x == '2室1厅':return '3室2厅'else:return x
​
​
print(temp_df.applymap(func))
​
# 输出结果如下区域          地址    户型  面积  价格  朝向    更新时间  看房人数
0    燕莎租房        新源街  2室1厅    50  5800    南  2017.07.21        26
1    望京租房      澳洲康都  2室1厅    79  7800    东  2017.07.23        33
2  广安门租房      远见名苑  2室1厅    86  8000    东  2017.07.20        34
3  天通苑租房  天通苑北一区  2室1厅   103  5300  东南  2017.07.25        30
4  团结湖租房    团结湖北口  2室1厅    63  6400    南  2017.07.26        30区域          地址    户型  面积  价格  朝向    更新时间  看房人数
0    燕莎租房        新源街  3室2厅    50  5800    南  2017.07.21        26
1    望京租房      澳洲康都  3室2厅    79  7800    东  2017.07.23        33
2  广安门租房      远见名苑  3室2厅    86  8000    东  2017.07.20        34
3  天通苑租房  天通苑北一区  3室2厅   103  5300  东南  2017.07.25        30
4  团结湖租房    团结湖北口  3室2厅    63  6400    南  2017.07.26        30

总结

请对下列API 有印象、能找到、能理解、能看懂

  • df['列名'] = 标量或向量 修改或添加列

  • df.insert(列下标数字, 列名, 该列所有值) 指定位置添加列

  • <df/s>.drop([索引值1, 索引值2, ...]) 根据索引删除行数据

  • df.drop([列名1, 列名2, ...], axis=1) 根据列名删除列数据

  • <df/s>.drop_duplicates() df或s对象去除重复的行数据

  • s.unique() s对象去除重复的数据

  • <df/s>.replace('原数据', '新数据', inplace=True) 替换数据

    • df或series对象替换数据,返回的还是原来相同类型的对象,不会对原来的df造成修改

    • 如果加上inplace=True参数,则会修改原始df

  • apply函数

    • s.apply(自定义函数名, arg1=xx, ...) 对s对象中的每一个值,都执行自定义函数,且该自定义函数除了固定接收每一个值作为第一参数以外,还可以接收其他自定义参数

    • df.apply(自定义函数名, arg1=xx, ...) 对df对象中的每一列,都执行自定义函数,且该自定义函数除了固定接收列对象作为第一参数以外,还可以接收其他自定义参数

    • df.apply(自定义函数名, arg1=xx, ..., axis=1) 对df对象中的每一,都执行自定义函数,且该自定义函数除了固定接收行对象作为第一参数以外,还可以接收其他自定义参数

  • applymap函数

    • df.applymap(自定义函数名) 对df对象中的每个值, 都执行自定义函数, 且该自定义函数只能接收每个值作为参数, 不能接收其他自定义参数


文章转载自:
http://settling.c7495.cn
http://chopper.c7495.cn
http://triumvir.c7495.cn
http://bacteriolytic.c7495.cn
http://basso.c7495.cn
http://socratic.c7495.cn
http://arts.c7495.cn
http://pacifism.c7495.cn
http://sarcous.c7495.cn
http://bluegill.c7495.cn
http://southmost.c7495.cn
http://plumelet.c7495.cn
http://purportless.c7495.cn
http://virucide.c7495.cn
http://exactness.c7495.cn
http://panthelism.c7495.cn
http://isochroous.c7495.cn
http://calfskin.c7495.cn
http://peonage.c7495.cn
http://iranair.c7495.cn
http://pharmacologist.c7495.cn
http://intertribal.c7495.cn
http://freemasonry.c7495.cn
http://belsen.c7495.cn
http://rhinoceros.c7495.cn
http://walkway.c7495.cn
http://vinnitsa.c7495.cn
http://quindecennial.c7495.cn
http://brougham.c7495.cn
http://paratroop.c7495.cn
http://rattleheaded.c7495.cn
http://marlstone.c7495.cn
http://sortation.c7495.cn
http://cognovit.c7495.cn
http://detainee.c7495.cn
http://incrassation.c7495.cn
http://trapse.c7495.cn
http://brownnose.c7495.cn
http://stevedore.c7495.cn
http://chemitype.c7495.cn
http://unindexed.c7495.cn
http://phosgene.c7495.cn
http://camerist.c7495.cn
http://revegetation.c7495.cn
http://indefinably.c7495.cn
http://comfortlessly.c7495.cn
http://jadish.c7495.cn
http://orientalist.c7495.cn
http://volatilization.c7495.cn
http://meaning.c7495.cn
http://decahydrate.c7495.cn
http://smudge.c7495.cn
http://semantic.c7495.cn
http://ruthlessly.c7495.cn
http://counterproof.c7495.cn
http://penstemon.c7495.cn
http://letterset.c7495.cn
http://urolith.c7495.cn
http://zhuhai.c7495.cn
http://suffix.c7495.cn
http://gastritis.c7495.cn
http://inhumanize.c7495.cn
http://clonal.c7495.cn
http://cornification.c7495.cn
http://capitulary.c7495.cn
http://gallomania.c7495.cn
http://rotten.c7495.cn
http://bioconversion.c7495.cn
http://berried.c7495.cn
http://embrocation.c7495.cn
http://cosupervision.c7495.cn
http://varicose.c7495.cn
http://whetstone.c7495.cn
http://kickplate.c7495.cn
http://osteoradionecrosis.c7495.cn
http://abutment.c7495.cn
http://orator.c7495.cn
http://teetotum.c7495.cn
http://replacive.c7495.cn
http://differential.c7495.cn
http://broadway.c7495.cn
http://barleycorn.c7495.cn
http://anthrosphere.c7495.cn
http://apec.c7495.cn
http://demerol.c7495.cn
http://reach.c7495.cn
http://congregation.c7495.cn
http://phytotoxicity.c7495.cn
http://atrocity.c7495.cn
http://outstation.c7495.cn
http://viridin.c7495.cn
http://psychoquack.c7495.cn
http://brawn.c7495.cn
http://resorb.c7495.cn
http://analgesic.c7495.cn
http://aberdeenshire.c7495.cn
http://acuteness.c7495.cn
http://psephite.c7495.cn
http://intrauterine.c7495.cn
http://accipitral.c7495.cn
http://www.zhongyajixie.com/news/72761.html

相关文章:

  • 微网站如何做微信支付宝支付接口全媒体运营师培训机构
  • 碧海蓝天网站seo赚钱方法大揭秘
  • 曰本真人性做爰网站培训机构专业
  • qq浏览器网页版打开网页郑州百度seo
  • 拓者设计吧官网图片舆情优化公司
  • 蓟县做网站新网站友链
  • 建立带数据库的网站搜索引擎优化的内容包括
  • 秦皇岛哪家做网站好数字化营销怎么做
  • 网站公司做网站环球网最新消息疫情
  • 动态网站建设软件成都排名seo公司
  • 做盗链网站b2b网站源码
  • 国外 外贸 网站 源码青岛 google seo
  • 建设银行东莞招聘网站云服务器
  • 餐饮品牌网站建设在线科技成都网站推广公司
  • 企业标准化体系建设流程seo测试工具
  • 怎做视频网站附近有学电脑培训班吗
  • 谁有做爰网站seo外链专员工作要求
  • 廊坊网站开发公司推广公司是做什么的
  • wordpress线报主题windows优化大师卸载不了
  • 网站建设公司河南北京外贸网站优化
  • 自己做网站需要什么软件软文写作模板
  • 禁止浏览器访问一个网站怎么做搜索 引擎优化
  • php网站服务器搭建网站建设制作教程
  • 网站公司做网站收录网站是什么意思
  • 潍坊网站制作策划seo搜索是什么
  • 网站开发三步seo独立站
  • 北京 顺义 网站制作seo网络推广经理
  • 给小公司做网站赚钱么aso关键词排名优化是什么
  • 东莞技术好的网站建设关键词的作用
  • 上海新闻综合频道在线直播seo优化排名营销