当前位置: 首页 > news >正文

用织梦做的网站seo优化一般包括哪些

用织梦做的网站,seo优化一般包括哪些,h5网站建设+案例,数字营销包括什么参考:LViT:语言与视觉Transformer在医学图像分割-CSDN博客 背景 标注成本过高而无法获得足够高质量标记数据医学文本注释被纳入以弥补图像数据的质量缺陷半监督学习:引导生成质量提高的伪标签医学图像中不同区域之间的边界往往是模糊的&…

参考:LViT:语言与视觉Transformer在医学图像分割-CSDN博客

背景

  • 标注成本过高而无法获得足够高质量标记数据
  • 医学文本注释被纳入以弥补图像数据的质量缺陷
  • 半监督学习:引导生成质量提高的伪标签
  • 医学图像中不同区域之间的边界往往是模糊的,边界附近的灰度值差很小,很难提取出高精度的分割边界

贡献

  • 指数伪标签迭代机制(EPI):帮助像素级注意模块(PLAM)----在半监督LViT设置下保持局部图像特征
  • LV (Language-Vision)损失被设计用来直接使用文本信息监督未标记图像的训练
  • 构建了包含x射线和CT图像的三个多模态医学分割数据集(图像+文本)
  • 模型
    • CNN (卷积神经网络):处理输入的图像,提取局部特征。
    • ViT (视觉Transformer):利用Transformer结构,处理从CNN提取的特征,并结合来自文本嵌入的特征。
    • BERT-Embed (BERT嵌入):利用BERT模型对输入的文本进行嵌入,提取语义信息。
  • 如何利用已有的图像-文本信息提高分割性能
    • 使用嵌入层代替文本编码器获得文本特征向量(减少模型中参数的数量)
    • 具有像素级注意模块(PLAM)的混合CNNTransformer结构能够更好地合并文本信息(CNN:局部特征;transformer:全局特征)
  • 如何充分利用文本信息,保证伪标签的质量
    • 伪标签迭代机制(Exponential Pseudo label Iteration mechanism, EPI)
      • 利用标记数据的标签信息和未标记数据的潜在信息
      • EPI间接结合文本信息,以指数移动平均线(EMA)的方式逐步完善伪标签[10]
    • LV (Language-Vision) loss的设计目的是直接利用文本信息来监督未标记医学图像的训练。

模型

双u型结构:u型CNN支路+u型Transformer支路

左面的红方框是Transformer支路,右面的红方框是CNN支路。

  • CNN分支作为信息输入源和预测输出的分割头
  • ViT分支用于图像和文本信息的合并(Transformer处理跨模态信息的能力)
  • u型CNN分支的跳接位置设置一个像素级注意模块(PLAM)----保留图像的局部特征信息

U形CNN分支

  • 每个CNN模块:Conv、BatchNorm(BN)和ReLU激活层
  • Maxpool对图像特征进行下采样(老规矩了) 
  • CNN-ViT交互模块:使用了上采样等方法来对齐来自ViT的特征。重构后的ViT特征通过残差与CNN特征连接,形成CNN-ViT交互特征。
  • 提高局部特征的分割能力:跳接处设计了PLAM,将CNN-ViT交互特征输入到PLAM中,再将交互特征传递到UpCNN模块,逐层向上给出信息。

U形Vit分支

  • 用于合并图像特征和文本特征
  • 第一层DownViT模块接收BERT-Embed输入的文本特征和第一层DownCNN模块输入的图像特征。
  • BERT-Embed的预训练模型是BERT_12_768_12模型,它可以将单个单词转换为768维的单词向量。
  • 跨模态特征合并操作
    • CTBN块还包括Conv层、BatchNorm层和ReLU激活层,用于对齐x_{img}、1和x_{text}的特征维度。
    • ViT由多头自注意组成
    • LN表示归一化层
    • 第2层、第3层和第4层的后续DownViT模块既接收上层DownViT模块的特征,又接收相应层的DownCNN模块的特征

PLAM 

  • 旨在保留图像的局部特征,并进一步融合文本中的语义特征
  • 并行分支:Global Average Pooling (GAP),Global Max Pooling (GMP) 
    • 加法操作:合并具有相似语义的相应通道特征并节省计算
    • 连接操作:更直观地整合特征信息,并有助于保留每个部分的原始特征
  • 使用MLP结构和乘法操作来帮助对齐特征大小
  • PLAM通过增强局部特征来缓解Transformer带来的对全局特征的偏好
  • PLAM采用通道注意和空间注意相结合的方式(我的理解是通道注意力机制:PLAM,空间注意力机制:Transformer)

指数伪标签迭代机制

更新后的伪标签将用于无标签数据的训练,使得无标签数据可以像有标签数据一样为模型提供监督信息。这种方式能够有效利用大量的无标签数据,提高模型的泛化能力和鲁棒性。 

  1. 初始生成

    • 使用有标签数据训练初始模型,生成伪标签。初始模型可以通过图中的Down CNN和Up CNN部分进行训练。
  2. 预测和更新

    • 在每一轮训练中,使用当前模型(例如图中的LViT模型)对无标签数据进行预测,生成新的伪标签。
    • 通过EPI机制更新伪标签,逐步提高其质量。这一过程在图中没有具体表示,但它是数据处理的一部分。
  3. 再训练

    • 使用更新后的伪标签对模型进行再训练。模型结构可以包括图中的Down ViT和Up ViT部分,以及中间的PLAM模块。

LV (Language-Vision) Loss 

  • 结构化的文本信息来形成相应的掩码(对比标签)
  • 计算文本之间的余弦相似度
    • x_{text},p表示伪标签对应的文本特征向量
    • x_{text},c表示对比标签对应的文本特征向量


http://www.zhongyajixie.com/news/7061.html

相关文章:

  • 包装盒在线设计网站广州百度seo 网站推广
  • 做网站线上线下价格混乱免费直链平台
  • 开发网站实时监控关键词优化平台有哪些
  • 网站后台管理系统哪个好网站接广告平台
  • 推广普通话的演讲稿百度seo收录
  • 介绍自己做的电影网站西安全网优化
  • 东莞市国外网站建设平台百度识图网页版
  • 黄冈智能网站建设平台百度seo关键词排名查询
  • 做英文网站的心得兰州网络推广优化怎样
  • 江苏网站建设开发网络营销常用的工具和方法
  • 没网站做推广企业自助建站
  • 个人简历自我评价怎么写哈尔滨企业网站seo
  • 互联网站外推广seo网站分析工具
  • 佛山电子商务网站建设市场调研方案范文
  • 阿升网站免费学设计seo网络优化公司
  • 网站模板制作教程视频体验营销案例
  • 淘宝的网站建设情况中国最新军事新闻
  • 都芳漆中文网站建设怎么引流推广
  • app是网站吗长沙百度地图
  • 手机网站菜单长沙关键词排名首页
  • 网站后台数字排版该怎么做今日新闻快讯10条
  • 中企动力 网站模板什么是淘宝搜索关键词
  • 手机网站分享站长工具箱
  • 网站开发点赞收藏设计思路seo快速整站上排名教程
  • 滕州网站制作哪家好整合营销什么意思
  • wordpress 局域网 显示不全北京seo课程
  • 深圳鼎诚网站建设如何实现网站的快速排名
  • 网站后台需要ie6修改网络整合营销方案
  • 企业为什么建立企业网站可以全部免费观看的软件
  • 班级网站建设规划书福州模板建站哪家好