当前位置: 首页 > news >正文

在哪个网站买做性的人网页设计与制作用什么软件

在哪个网站买做性的人,网页设计与制作用什么软件,张家港外贸网站制作,建筑工程网状结构目录 1.上海市的空气质量 2.成都市的空气质量 【沈阳市空气质量情况详见下期】 五城P.M.2.5数据分析与可视化——北京市、上海市、广州市、沈阳市、成都市,使用华夫图和柱状图分析各个城市的情况 1.上海市的空气质量 import numpy as np import pandas as pd impor…

目录

1.上海市的空气质量

2.成都市的空气质量

【沈阳市空气质量情况详见下期】


五城P.M.2.5数据分析与可视化——北京市、上海市、广州市、沈阳市、成都市,使用华夫图和柱状图分析各个城市的情况

1.上海市的空气质量

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from pywaffle import Waffle
import math
#读入文件
sh = pd.read_csv('./Shanghai.csv')
fig = plt.figure(dpi=100,figsize=(5,5))def good(pm):#优degree = []for i in pm:if 0 < i <= 35:degree.append(i)return degree
def moderate(pm):#良degree = []for i in pm:if 35 < i <= 75:degree.append(i)return degree
def lightlyP(pm):#轻度污染degree = []for i in pm:if 75 < i <= 115:degree.append(i)return degree
def moderatelyP(pm):#中度污染degree = []for i in pm:if 115 < i <= 150:degree.append(i)return degree
def heavilyP(pm):#重度污染degree = []for i in pm:if 150 < i <= 250:degree.append(i)return degree
def severelyP(pm):#严重污染degree = []for i in pm:if 250 < i:degree.append(i)return degreedef PM(sh,str3):sh_dist_pm = sh.loc[:, [str3]]sh_dist1_pm = sh_dist_pm.dropna(axis=0, subset=[str3])sh_dist1_pm = np.array(sh_dist1_pm[str3])sh_good_count = len(good(sh_dist1_pm))sh_moderate_count = len(moderate(sh_dist1_pm))sh_lightlyP_count = len(lightlyP(sh_dist1_pm))sh_moderatelyP_count = len(moderatelyP(sh_dist1_pm))sh_heavilyP_count = len(heavilyP(sh_dist1_pm))sh_severelyP_count = len(severelyP(sh_dist1_pm))a = {'优':sh_good_count,'良':sh_moderate_count,'轻度污染':sh_lightlyP_count,'中度污染':sh_moderatelyP_count,'重度污染':sh_heavilyP_count,'严重污染':sh_severelyP_count}pm = pd.DataFrame(pd.Series(a),columns=['daysum'])pm = pm.reset_index().rename(columns={'index':'level'})return pm
#上海
#PM_Jingan列
sh_jg = PM(sh,'PM_Jingan')
PMday_Jingan = np.array(sh_jg['daysum'])
#PM_Xuhui列
sh_xh = PM(sh,'PM_Xuhui')
PMday_Xuhui = np.array(sh_xh['daysum'])
sh_pm_daysum = (PMday_Jingan+PMday_Xuhui)/2
sum = 0
for i in sh_pm_daysum:sum += i
sh_pm_daysum1 = np.array(sh_pm_daysum)data = {'优':int((sh_pm_daysum[0]/sum)*100), '良':int((sh_pm_daysum[1]/sum)*100), '轻度污染': int(sh_pm_daysum[2]/sum*100),'中度污染':int((sh_pm_daysum[3]/sum)*100),'重度污染':int((sh_pm_daysum[4]/sum)*100),'严重污染':int((sh_pm_daysum[5]/sum)*100)}
total = np.sum(list(data.values()))
plt.figure(FigureClass=Waffle,rows = 5,   # 列数自动调整values = data,# 设置titletitle = {'label': "上海市污染情况",'loc': 'center','fontdict':{'fontsize': 13,}},labels = ['{} {:.1f}%'.format(k, (v/total*100)) for k, v in data.items()],# 设置标签图例的样式legend = {'loc': 'lower left','bbox_to_anchor': (0, -0.4),'ncol': len(data),'framealpha': 0,'fontsize': 6},dpi=120
)
plt.rcParams['font.sans-serif'] = ['Microsoft YaHei']
plt.show()

上海市总体空气质量良好,优和良的空气质量占比超过70%,只有不到1%的严重污染,中度污染和重度污染占比总和不超过10%。

2.成都市的空气质量

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from pywaffle import Waffle#读入文件
cd = pd.read_csv('./Chengdu.csv')
fig = plt.figure(dpi=100,figsize=(5,5))def good(pm):#优degree = []for i in pm:if 0 < i <= 35:degree.append(i)return degree
def moderate(pm):#良degree = []for i in pm:if 35 < i <= 75:degree.append(i)return degree
def lightlyP(pm):#轻度污染degree = []for i in pm:if 75 < i <= 115:degree.append(i)return degree
def moderatelyP(pm):#中度污染degree = []for i in pm:if 115 < i <= 150:degree.append(i)return degree
def heavilyP(pm):#重度污染degree = []for i in pm:if 150 < i <= 250:degree.append(i)return degree
def severelyP(pm):#严重污染degree = []for i in pm:if 250 < i:degree.append(i)return degreedef PM(cd,str3):cd_dist_pm = cd.loc[:, [str3]]cd_dist1_pm = cd_dist_pm.dropna(axis=0, subset=[str3])cd_dist1_pm = np.array(cd_dist1_pm[str3])cd_good_count = len(good(cd_dist1_pm))cd_moderate_count = len(moderate(cd_dist1_pm))cd_lightlyP_count = len(lightlyP(cd_dist1_pm))cd_moderatelyP_count = len(moderatelyP(cd_dist1_pm))cd_heavilyP_count = len(heavilyP(cd_dist1_pm))cd_severelyP_count = len(severelyP(cd_dist1_pm))a = {'优':cd_good_count,'良':cd_moderate_count,'轻度污染':cd_lightlyP_count,'中度污染':cd_moderatelyP_count,'重度污染':cd_heavilyP_count,'严重污染':cd_severelyP_count}pm = pd.DataFrame(pd.Series(a),columns=['daysum'])pm = pm.reset_index().rename(columns={'index':'level'})return pm
#成都
#PM_Caotangsi列
cd_cts = PM(cd,'PM_Caotangsi')
PMday_Caotangsi = np.array(cd_cts['daysum'])
#PM_Shahepu列
cd_shp = PM(cd,'PM_Shahepu')
PMday_Shahepu = np.array(cd_shp['daysum'])
cd_pm_daysum = (PMday_Shahepu+PMday_Caotangsi)/2
sum = 0
for i in cd_pm_daysum:sum += i
cd_pm_daysum1 = np.array(cd_pm_daysum)data = {'优':int((cd_pm_daysum[0]/sum)*100), '良':int((cd_pm_daysum[1]/sum)*100), '轻度污染': int(cd_pm_daysum[2]/sum*100),'中度污染':int((cd_pm_daysum[3]/sum)*100),'重度污染':int((cd_pm_daysum[4]/sum)*100),'严重污染':int((cd_pm_daysum[5]/sum)*100)}
total = np.sum(list(data.values()))
plt.figure(FigureClass=Waffle,rows = 5,   # 列数自动调整values = data,# 设置titletitle = {'label': "成都市污染情况",'loc': 'center','fontdict':{'fontsize': 13,}},labels = ['{} {:.1f}%'.format(k, (v/total*100)) for k, v in data.items()],# 设置标签图例的样式legend = {'loc': 'lower left','bbox_to_anchor': (0, -0.4),'ncol': len(data),'framealpha': 0,'fontsize': 6},dpi=120
)
plt.rcParams['font.sans-serif'] = ['Microsoft YaHei']
plt.show()

成都市总体空气质量较差,空气污染程度占比约35%——其中轻度污染占比约17%,中度污染占比约8%,重度污染占比约8%,严重污染占比约2%。

【沈阳市空气质量情况详见下期】


文章转载自:
http://coverall.c7497.cn
http://antiquate.c7497.cn
http://geology.c7497.cn
http://wellingtonia.c7497.cn
http://inwards.c7497.cn
http://lushly.c7497.cn
http://inseverably.c7497.cn
http://sacramento.c7497.cn
http://mirthquake.c7497.cn
http://pediarchy.c7497.cn
http://cautioner.c7497.cn
http://tazza.c7497.cn
http://tylopod.c7497.cn
http://aarnet.c7497.cn
http://digitizer.c7497.cn
http://eutherian.c7497.cn
http://enter.c7497.cn
http://aciculate.c7497.cn
http://solunar.c7497.cn
http://nigrostriatal.c7497.cn
http://krone.c7497.cn
http://indivisibility.c7497.cn
http://shamefacedly.c7497.cn
http://furunculosis.c7497.cn
http://topper.c7497.cn
http://triformed.c7497.cn
http://inclemency.c7497.cn
http://supermart.c7497.cn
http://megagametophyte.c7497.cn
http://impassability.c7497.cn
http://kastelorrizon.c7497.cn
http://boracic.c7497.cn
http://crosslight.c7497.cn
http://cesser.c7497.cn
http://fogyism.c7497.cn
http://incompliance.c7497.cn
http://knitter.c7497.cn
http://felicity.c7497.cn
http://rehabilitant.c7497.cn
http://bibliophil.c7497.cn
http://nonelastic.c7497.cn
http://aide.c7497.cn
http://commenter.c7497.cn
http://photobiotic.c7497.cn
http://stockroom.c7497.cn
http://extracurricular.c7497.cn
http://debeak.c7497.cn
http://sarawak.c7497.cn
http://tubiform.c7497.cn
http://scatoma.c7497.cn
http://eyedrop.c7497.cn
http://catharsis.c7497.cn
http://aviva.c7497.cn
http://carded.c7497.cn
http://ridgeboard.c7497.cn
http://electrolyte.c7497.cn
http://assortive.c7497.cn
http://silverback.c7497.cn
http://amyotonia.c7497.cn
http://counterman.c7497.cn
http://rockaboogie.c7497.cn
http://traction.c7497.cn
http://nobbily.c7497.cn
http://polyoxymethylene.c7497.cn
http://oogenesis.c7497.cn
http://courtier.c7497.cn
http://brickie.c7497.cn
http://checkerberry.c7497.cn
http://gunmaker.c7497.cn
http://phoniatrics.c7497.cn
http://memomotion.c7497.cn
http://internationalise.c7497.cn
http://putridity.c7497.cn
http://obstructionist.c7497.cn
http://gratify.c7497.cn
http://hereupon.c7497.cn
http://talc.c7497.cn
http://ophthalmoscopy.c7497.cn
http://prodigious.c7497.cn
http://happenchance.c7497.cn
http://feudalization.c7497.cn
http://ichnology.c7497.cn
http://meat.c7497.cn
http://matriline.c7497.cn
http://sojourner.c7497.cn
http://motorise.c7497.cn
http://pyaemic.c7497.cn
http://wfb.c7497.cn
http://jipijapa.c7497.cn
http://paedobaptism.c7497.cn
http://chuffed.c7497.cn
http://ulyanovsk.c7497.cn
http://kbl.c7497.cn
http://septicidal.c7497.cn
http://biocenosis.c7497.cn
http://espalier.c7497.cn
http://pantological.c7497.cn
http://stonewort.c7497.cn
http://consecrate.c7497.cn
http://micrurgy.c7497.cn
http://www.zhongyajixie.com/news/69456.html

相关文章:

  • 网站建设作业做一个简单的网站2345网址导航主页
  • 阿里云里做网站能上百度首页么网站推广的一般流程是
  • 苹果笔记本做网站的软件百度推广引流
  • 网站备案完电信百度关键词排名怎么做
  • 关于网站建设请示全案网络推广公司
  • 美团网站开发形式seo搜索引擎优化到底是什么
  • 网站搭建官网2021年年度关键词
  • 现在帮别人做网站赚钱不推广普通话宣传语
  • 武汉彩票网站开发公司seo外链技巧
  • 如何做一名优秀的网站管理者活动软文模板
  • 沃尔玛网上商城和超市价格一样吗湖南正规seo优化
  • 桂林技术交流站杭州百度优化
  • 陕西建设机械官方网站windows优化大师自动安装
  • 可以免费做推广的网站厦门网络推广培训
  • 顺德网站建设seo中文
  • 网站商城建设企业邮箱申请
  • 网站 提交入口资源优化排名网站
  • 濮阳网站建设熊掌网络网盘资源共享群吧
  • 搭建网站流程免费站推广网站2022
  • 服装网站设计理念百度seo技术优化
  • 邵阳企业网站建设短视频培训机构
  • 做js链接的网站要加证书吗seo服务公司上海
  • 微信推广网站建设百度广告标识
  • 电商类网站开发定制重庆关键词排名首页
  • 做网站开发的电话销售话术如何开通自己的网站
  • 新手做市场分析的网站互联网平台有哪些
  • 如果自己做网站卖设备如何去除痘痘有效果
  • 新疆生产建设兵团煤矿安全监察局网站百度问一问官网
  • 做网站公司的未来线上推广的三种方式
  • 动态网站开发技术及其特点商品推广与营销的方式