当前位置: 首页 > news >正文

网站做支付接口吗搜索引擎优化期末考试答案

网站做支付接口吗,搜索引擎优化期末考试答案,价格低质量好的广告语,wordpress如何修改后台登录地址文章目录 昇思MindSpore应用实践1、基于MindSpore通过GPT实现情感分类GPT 模型(Generative Pre-Training)简介imdb影评数据集情感分类 2、Tokenizer导入预训练好的GPT3、基于预训练的GPT微调实现情感分类 Reference 昇思MindSpore应用实践 本系列文章主…

文章目录

      • 昇思MindSpore应用实践
          • 1、基于MindSpore通过GPT实现情感分类
            • GPT 模型(Generative Pre-Training)简介
            • imdb影评数据集情感分类
          • 2、Tokenizer导入预训练好的GPT
          • 3、基于预训练的GPT微调实现情感分类
      • Reference

昇思MindSpore应用实践

本系列文章主要用于记录昇思25天学习打卡营的学习心得。

1、基于MindSpore通过GPT实现情感分类
GPT 模型(Generative Pre-Training)简介

GPT-1模型是一种基于神经网络的自回归(AR)语言模型。该模型使用了“Transformer”的编解码架构,一种新型的序列到序列(Seq2Seq)模型,能够在处理长序列数据时避免传统的循环神经网络(Recurrent Neural Network,RNN)中存在的梯度消失问题。

Transformer架构中的关键组件包括多头自注意力机制和残差连接等,GPT使用了Transformer的解码器部分。
在这里插入图片描述
预训练技术:GPT-1使用了一种称为“生成式预训练”(Generative Pre-Training,GPT)的技术。
预训练分为两个阶段:预训练和微调(fine-tuning)。

在预训练阶段,GPT-1使用了大量的无标注文本数据集,例如维基百科和网页文本等。通过最大化预训练数据集上的log-likelihood来训练模型参数。
微调阶段,GPT-1将预训练模型的参数用于特定的自然语言处理任务,如文本分类和问答系统等。

多层模型:GPT-1模型由多个堆叠的Transformer编码器组成,每个编码器包含多个注意力头和前向神经网络。这使得模型可以从多个抽象层次对文本进行建模,从而更好地捕捉文本的语义信息。

通过使用上述预训练任务,研究团队成功地训练出了一个大规模的语言模型GPT。该模型在多项语言理解任务上取得了显著的成果,包括阅读理解、情感分类和自然语言推理等任务。

imdb影评数据集情感分类
import osimport mindspore
from mindspore.dataset import text, GeneratorDataset, transforms
from mindspore import nnfrom mindnlp.dataset import load_datasetfrom mindnlp._legacy.engine import Trainer, Evaluator
from mindnlp._legacy.engine.callbacks import CheckpointCallback, BestModelCallback
from mindnlp._legacy.metrics import Accuracyimdb_ds = load_dataset('imdb', split=['train', 'test'])
imdb_train = imdb_ds['train']
imdb_test = imdb_ds['test']imdb_train.get_dataset_size()import numpy as npdef process_dataset(dataset, tokenizer, max_seq_len=512, batch_size=4, shuffle=False):is_ascend = mindspore.get_context('device_target') == 'Ascend'def tokenize(text):if is_ascend:tokenized = tokenizer(text, padding='max_length', truncation=True, max_length=max_seq_len)else:tokenized = tokenizer(text, truncation=True, max_length=max_seq_len)return tokenized['input_ids'], tokenized['attention_mask']if shuffle:dataset = dataset.shuffle(batch_size)# map datasetdataset = dataset.map(operations=[tokenize], input_columns="text", output_columns=['input_ids', 'attention_mask'])dataset = dataset.map(operations=transforms.TypeCast(mindspore.int32), input_columns="label", output_columns="labels")# batch datasetif is_ascend:dataset = dataset.batch(batch_size)else:dataset = dataset.padded_batch(batch_size, pad_info={'input_ids': (None, tokenizer.pad_token_id),'attention_mask': (None, 0)})return dataset
2、Tokenizer导入预训练好的GPT
from mindnlp.transformers import GPTTokenizer
# tokenizer
gpt_tokenizer = GPTTokenizer.from_pretrained('openai-gpt')# add sepcial token: <PAD>
special_tokens_dict = {"bos_token": "<bos>","eos_token": "<eos>","pad_token": "<pad>",
}
num_added_toks = gpt_tokenizer.add_special_tokens(special_tokens_dict)# split train dataset into train and valid datasets,训练集和验证集分割
imdb_train, imdb_val = imdb_train.split([0.7, 0.3])dataset_train = process_dataset(imdb_train, gpt_tokenizer, shuffle=True)
dataset_val = process_dataset(imdb_val, gpt_tokenizer)
dataset_test = process_dataset(imdb_test, gpt_tokenizer)next(dataset_train.create_tuple_iterator())[Tensor(shape=[4, 512], dtype=Int64, value=[[11295,   246,   244 ... 40480, 40480, 40480],[  616,   509,   246 ... 40480, 40480, 40480],[  616,  4894,   498 ... 40480, 40480, 40480],[  589,   500,   589 ... 40480, 40480, 40480]]),Tensor(shape=[4, 512], dtype=Int64, value=[[1, 1, 1 ... 0, 0, 0],[1, 1, 1 ... 0, 0, 0],[1, 1, 1 ... 0, 0, 0],[1, 1, 1 ... 0, 0, 0]]),Tensor(shape=[4], dtype=Int32, value= [0, 0, 0, 1])]
3、基于预训练的GPT微调实现情感分类
from mindnlp.transformers import GPTForSequenceClassification
from mindspore.experimental.optim import Adam# set bert config and define parameters for training
model = GPTForSequenceClassification.from_pretrained('openai-gpt', num_labels=2)
model.config.pad_token_id = gpt_tokenizer.pad_token_id
model.resize_token_embeddings(model.config.vocab_size + 3)optimizer = nn.Adam(model.trainable_params(), learning_rate=2e-5)metric = Accuracy()# define callbacks to save checkpoints
ckpoint_cb = CheckpointCallback(save_path='checkpoint', ckpt_name='gpt_imdb_finetune', epochs=1, keep_checkpoint_max=2)
best_model_cb = BestModelCallback(save_path='checkpoint', ckpt_name='gpt_imdb_finetune_best', auto_load=True)trainer = Trainer(network=model, train_dataset=dataset_train,eval_dataset=dataset_train, metrics=metric,epochs=1, optimizer=optimizer, callbacks=[ckpoint_cb, best_model_cb],jit=False)trainer.run(tgt_columns="labels")

在这里插入图片描述

Reference

[1] 北方的郎-从GPT-1到GPT-4,GPT系列模型详解
[2] 昇思大模型平台
[3] 昇思官方文档-基于MindSpore通过GPT实现情感分类

http://www.zhongyajixie.com/news/66304.html

相关文章:

  • 北京北控京奥建设有限公司网站电脑优化设置
  • 订餐网站建设seo软件全套
  • 中国建设部网站线上营销策略有哪些
  • 让别人访问我的网站郑州今天刚刚发生的新闻
  • 网站界面设计案例教程seo代理计费系统
  • 怎么做网站轮播图片电商seo是指
  • 网站后台修改图片集顺序网站建设的数字化和互联网化
  • 如何建设网站兴田德润实惠大数据
  • 怎么在自己做的网站上发视频网站优化一年多少钱
  • 网站建好了seo怎么做怀化网络推广
  • 烟台企业自助建站系统公关策划公司
  • 老公做赌博网站推广长沙网站推广工具
  • 如何用本机电脑做网站服务器网站推广平台排行
  • 抚州公司做网站郑州网站推广公司咨询
  • 背景网站建设公司常德政府网站市民留言
  • 深圳网络营销网站建设电商网站建设 网站定制开发
  • 如何查到网站建设百度指数下载手机版
  • 企业网站怎么自适应谷歌官网下载
  • 做网站跟做APP哪个容易全自动引流推广软件免费
  • 在线制作动画网站西安网络优化大的公司
  • 雄安做网站公司赤峰seo
  • 网站开发教学视频百度怎么推广自己的视频
  • wordpress网站网页加密云南最新消息
  • 利用淘宝联盟做网站搜索引擎营销的方法不包括
  • 什么做网站推广百度广告联盟网站
  • 做装修网站好赚钱吗百度云客服人工电话
  • 编程 网站建设福州关键词优化平台
  • 邯郸专业网站建设公司软文推广做得比较好的推广平台
  • 网站调用时间创建个人网站的流程
  • 企业网站制作公司河南网站公司