当前位置: 首页 > news >正文

国产做性直播视频网站如何做一个网站的seo

国产做性直播视频网站,如何做一个网站的seo,湖南省建设厅易晓林,erp网站代做在机器学习中,数据清洗与转换包括哪些内容? 对数据进行初步的预处理,需要将其转换为一种适合机器学习模型的表示形式对许多模型类型来说,这种表示就是包含数值数据的向量或者矩阵: 1)将类别数据编码成为对…

在机器学习中,数据清洗与转换包括哪些内容?

对数据进行初步的预处理,需要将其转换为一种适合机器学习模型的表示形式对许多模型类型来说,这种表示就是包含数值数据的向量或者矩阵:

1)将类别数据编码成为对应的数值表示(一般使用1-of-k方法)-dumy

2)从文本数据中提取有用的数据(一般使用词袋法或者TF-IDF)

3)处理图像或者音频数据(像素、声波、音频、振幅等<傅里叶变换>)

4)数值数据转换为类别数据以减少变量的值,比如年龄分段

5)对数值数据进行转换,比如对数转换

6)对特征进行正则化、标准化,以保证同一模型的不同输入变量的值域相同

7)对现有变量进行组合或转换以生成新特征,比如平均数(做虚拟变量)不断尝试

文本数据抽取有哪些方法?

词袋法︰将文本当作一个无序的数据集合,文本特征可以采用文本中的词条T进行体现,那么文本中出现的所有词条及其出现的次数就可以体现文档的特征

TF-IDF:词条的重要性随着它在文件中出现的次数成正比增加,但同时会随着它在语料库中出现的频率成反比下降;也就是说词条在文本中出现的次数越多,表示该词条对该文本的重要性越高,词条在所有文本中出现的次数越少,说明这个词条对文本的重要性越高。TF(词频)指某个词条在文

本中出现的次数,一般会将其进行归一化处理(该词条数量/该文档中所有词条数量);IDF(逆向文件频率)指一个词条重要性的度量,一般计算方式为总文件数目除以包含该词语之文件的数目,再将得到的商取对数得到。TF-IDF实际上是∶TF *IDF

有一种类数据[1,3,2,1,3,3,1],通过python实现哑编码代码?

def yumcode(a):y=[]for x in (1,2,3):if x==a:y.append(1)else:y.append(0)return yyum=map(lambda x:yumcode(x) ,[1,3,2,1,3,3,1])for e in yum:print(e)

在机器学习中,请写出模型效果判断常用算法。

MSE∶误差平方和,越趋近于0表示模型越拟合训练数据。

RMSE: MSE的平方根,作用同MSE

R2∶取值范围(负无穷,1],值越大表示模型越拟合训练数据;最优解是1;当模型预测为随机值的时候,有可能为负﹔若预测值恒为样本期望,R2为0

TSS∶总平方和TSS(Total Sum of Squares),表示样本之间的差异情况,是伪方差的m倍

RSS:残差平方和RSS ( Residual Sum of Squares ),表示预测值和样本值之间的差异情况,是MSE的m倍

请同学们使用逻辑回归根据鸢尾花(iris.data)分类建模

#加载数据datas=pd.read_csv("datas/iris.data",header=None)#加载iris.data数据#数据处理datas=datas.replace("?",np.NaN)#把?号用NaN替换datas=datas.dropna(how="any",axis=1)#删除NaN行#提取X和YX=datas.iloc[:,0:-1]#取0到最后一列前一列#对种类英文编码Y=pd.Categorical(datas[4]).codes#对最后一列做编码#对数据进行拆分#逻辑回归是用来判断 y属于哪一个种类 1 0train_x,test_x,train_y,test_y=train_test_split(X,Y,test_size=0.2,random_state=1)#创建模型和训练模型ss=StandardScaler()train_x=ss.fit_transform(train_x)#把trainx数据标准化test_x=ss.transform(test_x)#把testx数据标准化logistic=LogisticRegressionCV(random_state=2,multi_class="ovr",cv=3)logistic.fit(train_x,train_y) #能够识别三种花模型 求theta#评估proba=logistic.predict_proba(test_x)#每条记录每个种类的概率 30行 3列ymy=label_binarize(test_y,classes=(0,1,2))#转换成哑编码 30行 3列fpr,tpr,threshold=metrics.roc_curve(ymy.ravel(),proba.ravel())#ravel拉平,变成一维auc=metrics.auc(fpr,tpr)#根据fpr tpr计算面积print("auc",auc)knn=KNeighborsClassifier(n_neighbors=5,algorithm="kd_tree")knn.fit(train_x,train_y)#构建kd树test_y_hat=knn.predict(test_x)proba_knn=knn.predict_proba(test_x)fpr1,tpr1,threshold1=metrics.roc_curve(ymy.ravel(),proba_knn.ravel())auc1=metrics.auc(fpr1,tpr1)print(auc1)plt.figure()#画逻辑回归算法ROC曲线plt.plot(fpr,tpr,color='red',label='回归ROC auc:'+str(auc))plt.plot(fpr1,tpr1,color='green',label='knnROC auc:'+str(auc1))plt.legend()plt.show()

利用梯度下降算法完成y=

求解x并画出轨迹图

import numpy as npimport matplotlib.pyplot as pltimport sysX=[]Y=[]def l(x):#相当损失函数return x*x#x^2def h(x):#梯度return 2*xtheta=2#theta初始值2# C:\Users\t430\AppData\Local\VZipy=l(theta)#调用损失函数f_change=2#损失变化f_up=l(theta)#上次损失Y.append(y)X.append(theta)b=0.8#a太大不收敛i=0print(f_change >1e-10)while f_change >1e-10:theta=theta-b*h(theta)#更新thetatmp=l(theta)#theta的平方f_change=abs(f_up-tmp)f_up=tmpX.append(theta)Y.append(tmp)i=i+1print(theta)plt.figure()plt.plot(X,Y,c="red")print(X)X2=np.arange(-2,2,0.1)Y2=X2**2plt.plot(X2,Y2,c="green")plt.show()

http://www.zhongyajixie.com/news/66050.html

相关文章:

  • 做网站哪家好哪家好关键词排名优化公司哪家好
  • 自己做的网站页面错误seo技术交流论坛
  • 爱旅游网站制作举例说明seo
  • 大庆城乡建设局网站首页免费海报模板网站
  • 网站开发商业计划书搜索引擎营销案例分析题
  • 为什么招聘网站不能用自己做的简历人民日报今天新闻
  • 网站建设服务商怎么创建一个自己的网站
  • 惠州做网站建设价格优化推广网站怎么做
  • 做网站策划需要什么技能百度一下你就知道了百度一下
  • 合肥市住房和城乡建设局手机优化大师下载2022
  • 试用体验网站网络推广文案
  • 政府门户网站建设问题百度ai人工智能平台
  • 东乡网站建设阿里云搜索引擎网址
  • 互联网推广引流是做什么的seo专员是什么职位
  • 网站建设需求流程图凌哥seo
  • 效果图网站源码进一步优化营商环境
  • php动态网站开发 习题答案微博今日热搜榜
  • 切片长沙seo关键词排名优化
  • 网站建设seo基本要求广州seo网站服务公司
  • 想学室内设计在哪里学比较好郑州靠谱seo整站优化
  • 网站建设和执纪监督2020 惠州seo服务
  • wordpress默认编辑器不好用seo服务是什么意思
  • c语言做项目网站工作手机
  • 德阳响应式网站建设seo公司软件
  • 工程监理行业为什么做网站百度推广的广告真实可信吗
  • 丹东做网站公司荆门刚刚发布的
  • 怎样建设一个网站赚钱bt磁力在线种子搜索神器下载
  • 网站建设和管理心得链接优化方法
  • 咋把网站制作成软件网页制作html代码
  • 一页式网站模板营销战略