当前位置: 首页 > news >正文

做系统之前的网站收藏在哪里看seo排名优化什么意思

做系统之前的网站收藏在哪里看,seo排名优化什么意思,云南省建设工程电子网,网站是公司域名是个人可以题目链接 Leetcode.866 回文质数 rating : 1938 题目描述 给你一个整数 n n n ,返回大于或等于 n n n 的最小 回文质数。 一个整数如果恰好有两个除数: 1 1 1 和它本身,那么它是 质数 。注意, 1 1 1 不是质数。 例如&#xf…

题目链接

Leetcode.866 回文质数 rating : 1938

题目描述

给你一个整数 n n n ,返回大于或等于 n n n 的最小 回文质数

一个整数如果恰好有两个除数: 1 1 1 和它本身,那么它是 质数 。注意, 1 1 1 不是质数。

  • 例如, 2 、 3 、 5 、 7 、 11 2、3、5、7、11 235711 13 13 13 都是质数。

一个整数如果从左向右读和从右向左读是相同的,那么它是 回文数

  • 例如, 101 101 101 12321 12321 12321 都是回文数。

测试用例保证答案总是存在,并且在 [ 2 , 2 × 1 0 8 ] [2, 2 \times 10^8] [2,2×108] 范围内。

示例1:

输入:n = 6
输出:7

示例2:

输入:n = 8
输出:11

示例3:

输入:n = 13
输出:101

提示:
  • 1 ≤ n ≤ 1 0 8 1 \leq n \leq 10^8 1n108

解法:数学 + 判断质数

对于 回文数 ,我们可以得出这么一个结论:任何一个大于 11 11 11 的偶数长度的回文数,一定是 11 11 11 的倍数。

证明如下:

  • 1 0 0 = 1 m o d 11 = 1 10 ^ 0 = 1 \ mod \ 11 = 1 100=1 mod 11=1
  • 1 0 1 = 10 m o d 11 = 10 10 ^ 1 = 10 \ mod \ 11 = 10 101=10 mod 11=10
  • 1 0 2 = 100 m o d 11 = 1 10 ^ 2 = 100 \ mod \ 11 = 1 102=100 mod 11=1
  • 1 0 3 = 1000 m o d 11 = 10 10 ^ 3 = 1000 \ mod \ 11 = 10 103=1000 mod 11=10
  • 1 0 4 = 10000 m o d 11 = 1 10 ^ 4 = 10000 \ mod \ 11 = 1 104=10000 mod 11=1

根据数学归纳法,我们可以得出这样的结论:

  • n n n 为偶数,那么 1 0 n m o d 11 = 1 10 ^ n \ mod \ 11 = 1 10n mod 11=1
  • n n n 为奇数,那么 1 0 n m o d 11 = 10 10 ^ n \ mod \ 11 = 10 10n mod 11=10

假设回文数 P P P 一共有 2 n 2n 2n 位,从高到低分别为 a 1 a 2 a 3 a 4 . . . a n a n a n − 1 . . . a 2 a 1 a_1a_2a_3a_4...a_na_na_{n-1}...a_2a_1 a1a2a3a4...ananan1...a2a1

将其转换为十进制的形式如下:

P = a 1 × 1 0 2 n − 1 + a 2 × 1 0 2 n − 2 + . . . + a n × 1 0 n + a n × 1 0 n − 1 + . . . + a 2 × 10 + a 1 P = a_1\times10^{2n-1}+a_2\times10^{2n-2}+...+a_n\times10^n+a_n\times10^{n-1}+...+a_2\times10+a_1 P=a1×102n1+a2×102n2+...+an×10n+an×10n1+...+a2×10+a1

如果对回文数 P P P 11 11 11,我们可以得到如下的结果:

P = a 1 × 10 + a 2 × 1 + a 3 × 10 + . . . a n × 10 + a n × 1 + . . . + a 2 × 10 + a 1 P = a_1 \times 10 + a_2\times1+a_3\times10+...a_n\times10+a_n\times1+...+a_2\times10+a1 P=a1×10+a2×1+a3×10+...an×10+an×1+...+a2×10+a1

将其整理一下得到如下结果:
P = a 1 × 11 + a 2 × 11 + a 3 × 11 + . . . + a n × 11 P = a_1 \times 11 + a_2\times11+a_3\times11+...+a_n\times11 P=a1×11+a2×11+a3×11+...+an×11

可以发现在对 P P P 11 11 11 的基础之上,剩下的余数依旧是 11 11 11说明 11 11 11 可以整除 P P P,也就是 P P P 11 11 11 的倍数。

根据以上的证明,我们可以得出结论:

  • 如果 n ≤ 11 n \leq 11 n11,那么只需要在 [ 2 , 11 ] [2, 11] [2,11] 中找到第一个大于等于 n n n 的质数返回即可。
  • 如果 n > 11 n > 11 n>11,因为偶数长度的回文数全都不是质数,所以我们只需要判断奇数长度的回文数。由于是回文数,所以我们只需要获取前一半,后一半直接拼接上即可。所以只需要在 [ 10 , 19999 ] [10, 19999] [10,19999] 找到第一个大于等于 n n n 的回文质数 x x x 即可。

时间复杂度: O ( n 3 4 ) O(n^\frac{3}{4}) O(n43)

C++代码:

class Solution {
public:bool check(int x){if(x < 2) return false;for(int i = 2;i * i <= x;i++){if(x % i == 0) return false;}return true;}int primePalindrome(int k) {if(k <= 11){for(int i = 2;i <= 11;i++){if(i >= k && check(i)) return i;}}else{for(int i = 10;i <= 19999;i++){string s = to_string(i);int n = s.size();for(int i = n - 2;i >= 0;i--) s.push_back(s[i]);int x = stoi(s);if(x >= k && check(x)) return x;}            }return -1;}
};

Python3代码:

def check(x: int) -> bool:if x < 2:return Falsei = 2while i * i <= x:if x % i == 0:return Falsei += 1return Trueclass Solution:def primePalindrome(self, k: int) -> int:if k <= 11:for i in range(2, 12):if i >= k and check(i):return ielse:for i in range(10, 20000):s = str(i)n = len(s)s = s + s[:n - 1][::-1]x = int(s)if x >= k and check(x):return xreturn -1
http://www.zhongyajixie.com/news/61707.html

相关文章:

  • 在哪个网站做视频赚钱的整合营销公司排名
  • 淘宝推广网站怎么做友情链接地址
  • 做动态网站必学百度图片搜索引擎
  • 企业网站建设方案行情100个常用的关键词
  • 建商城网站公司南宁网站seo大概多少钱
  • 专业手机网站建设企业南京网站设计优化公司
  • 西安网站开发百度地图在线使用
  • 网站建设需要具备的能力游戏代理加盟
  • wordpress阿里云esc站群优化公司
  • 国外校友网站建设的现状网站服务器信息查询
  • 成都seo优化推广优化网站制作方法大全
  • 网站建设费计入什么科目凡科建站平台
  • iis做网站主目录选哪里搜索引擎营销是什么意思
  • 做网站最省钱营销自动化工具
  • 盗版小说网站建设电子商务网站
  • 腾讯云服务器搭建教程鸡西seo顾问
  • 江津网站建设方案seo实战密码第三版
  • 网站做海康直播公司建网站流程
  • 微网站如何做微信支付宝支付关键词检测工具
  • 企业网站建设的可行性百度热搜榜在哪里看
  • wordpress 不支持mail函数毕节地seo
  • 企业网站必须备案吗百度seo效果
  • 怎么用网站的二级目录做排名广告营销顾问
  • 有没有专门做帽子的网站网站推广郑州
  • wordpress换主题链接seo外链工具下载
  • 东莞网络建站公司地推拉新app推广接单平台免费
  • 怎么接单做网站世界最新新闻
  • 手机开发者模式利弊windows优化大师好不好
  • 做购物网站seo页面优化技术
  • 网站界面设计专利推广关键词优化公司