当前位置: 首页 > news >正文

庆阳网站设计服务营销培训心得体会

庆阳网站设计服务,营销培训心得体会,网站服务器重做系统怎么做,网站品牌建设公司实例分割、语义分割和 SAM(Segment Anything Model) 都是图像处理中的重要技术,它们的目标是通过分割图像中的不同对象或区域来帮助识别和分析图像,但它们的工作方式和适用场景各有不同。 1. 语义分割(Semantic Segme…

实例分割、语义分割和 SAM(Segment Anything Model) 都是图像处理中的重要技术,它们的目标是通过分割图像中的不同对象或区域来帮助识别和分析图像,但它们的工作方式和适用场景各有不同。

1. 语义分割(Semantic Segmentation)

  • 目标: 语义分割的目的是将图像中的每个像素归类到某一个类别中,不区分同类中的不同个体。
  • 特点: 语义分割只关心“类别”,而不关心图像中有多少个对象。换句话说,如果图像中有多辆车,它们都被归类为“车”,但不会区分不同的车。
  • 应用场景: 自动驾驶中的道路、建筑物、行人分割,医学图像中的器官分割。

例子: 在城市街景中,语义分割会将所有的树木标记为同一个类别“树”,所有的道路标记为“道路”,而不会区分某一棵树或某一段路。

2. 实例分割(Instance Segmentation)

  • 目标: 实例分割不仅要将每个像素归类到某个类别,还要区分同类中的不同个体。
  • 特点: 实例分割可以同时进行物体检测和像素级的分割。例如,它不仅会检测图像中的车,还会为每辆车生成单独的掩码,从而区分同一图像中的不同车辆。
  • 应用场景: 实例分割常用于自动驾驶、增强现实(AR)、机器人视觉、视频监控等领域,在这些场景中需要区分同类物体的不同个体。

例子: 在同样的城市街景中,实例分割不仅会识别“车”这个类别,还会区分每一辆车。

3. SAM(Segment Anything Model)

  • 目标: SAM 是一种通用的分割模型,旨在实现“一切的分割”。它结合了语义分割和实例分割的能力,但更加灵活。
  • 特点: SAM 能够在提供提示(如边界框、点)的情况下进行精确的分割,而无需针对特定任务或类别进行专门训练。这意味着你可以通过简单的提示(如边界框、点击目标)来触发分割操作,无论图像中是什么物体,SAM 都可以尝试分割。
  • 应用场景: SAM 可以在任何需要分割的场景下应用,尤其适用于需要用户交互的场景,如图像标注、医疗图像分析、用户定制分割等。它能够分割新类别的物体,而不依赖于预先定义的类别。

例子: SAM 可以根据给定的边界框分割出手、车、动物等,而不需要事先知道物体的类别。用户也可以通过点选某些区域来生成物体的分割掩码。

主要区别

  1. 类别和个体的区分:

    • 语义分割: 只关心类别,所有属于同一类别的物体都会被统一处理,不区分个体。
    • 实例分割: 不仅分割类别,还区分每个个体,即使是同一类别的物体,也会生成单独的掩码。
    • SAM: 可以基于提示(如点、边界框)分割任意物体,具有更大的灵活性,不局限于某一特定类别或预先定义的任务。
  2. 应用场景:

    • 语义分割: 适合场景分类和大范围的物体分割,如识别整个场景中的类别。
    • 实例分割: 适合需要区分多个同类物体的场景,如自动驾驶中的行人、车辆检测。
    • SAM: 适合任意分割任务,可以应对未知类别和灵活的用户交互需求。
  3. 灵活性:

    • 语义分割和实例分割通常依赖于预先定义的类别或特定任务进行训练。
    • SAM 是一种通用分割工具,能够根据用户的提示分割出几乎任何类型的物体,无需预先训练。

小结:

  • 语义分割 是针对类别的分割,适用于大范围的场景分析。
  • 实例分割 通过区分同类个体,提供更精细的对象分割。
  • SAM 则是一种通用分割工具,灵活且不局限于特定类别和任务。

首先我们写一段简单的代码来看一下语义分割,语义分割就是可以把具体的某个像素点分给某个物体,而不是像目标检测一样用一个框标出

 

import torch
from torchvision import models, transforms
from PIL import Image
import matplotlib.pyplot as plt# 加载预训练的DeepLabV3模型
model = models.segmentation.deeplabv3_resnet101(pretrained=True).eval()# 图像预处理
preprocess = transforms.Compose([transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])# 加载图像
image_path = "path/000000000257.jpg"  # 替换为你的图片路径
image = Image.open(image_path)
input_tensor = preprocess(image).unsqueeze(0)# 执行语义分割
with torch.no_grad():output = model(input_tensor)['out'][0]
output_predictions = output.argmax(0)  # 获取每个像素的类别# 将分割结果可视化
plt.figure(figsize=(10, 5))# 显示原图
plt.subplot(1, 2, 1)
plt.imshow(image)
plt.title("Original Image")# 显示语义分割结果
plt.subplot(1, 2, 2)
plt.imshow(output_predictions.cpu().numpy())
plt.title("Semantic Segmentation")
plt.show()

 

  把物体和背景有效进行区分了

实例分割

import torch
from PIL import Image
from torchvision import models, transforms
import matplotlib.pyplot as plt
import cv2
import numpy as np# 加载预训练的Mask R-CNN模型
model = models.detection.maskrcnn_resnet50_fpn(pretrained=True).eval()# 图像预处理
preprocess = transforms.Compose([transforms.ToTensor(),
])# 加载图像
image_path = "path/000000000257.jpg" # 替换为你的图片路径
image = Image.open(image_path)
input_tensor = preprocess(image).unsqueeze(0)# 执行实例分割
with torch.no_grad():output = model(input_tensor)# 获取分割掩码
masks = output[0]['masks'].cpu().numpy()
boxes = output[0]['boxes'].cpu().numpy()# 可视化边界框和实例掩码
image_cv = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
for i in range(len(masks)):mask = masks[i, 0]  # 获取掩码mask = cv2.resize(mask, (image_cv.shape[1], image_cv.shape[0]))  # 将掩码调整为与原图大小一致# 将掩码叠加到图像上image_cv[mask > 0.5] = [0, 0, 255]  # 红色掩码# 绘制边界框box = boxes[i].astype(int)cv2.rectangle(image_cv, (box[0], box[1]), (box[2], box[3]), (255, 0, 0), 2)  # 蓝色边框# 显示结果
plt.imshow(cv2.cvtColor(image_cv, cv2.COLOR_BGR2RGB))
plt.title("Instance Segmentation (Mask R-CNN)")
plt.show()

 当然小编这里导入的语义分割和实例分割的模型差异导致了识别也有差异

SAM

import matplotlib.pyplot as plt
import numpy as np
from ultralytics import YOLO
from PIL import Image
import cv2
from segment_anything import SamPredictor, sam_model_registry# 加载图像
image_path = r'F:/photos/photo_1.jpg'  # 替换为你的图片路径
image = Image.open(image_path)# 将图像转换为 OpenCV 格式以便显示
image_cv = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)# 加载 YOLO 模型
yolo_model = YOLO("F:/科研学习/yolo系列params/v10/YOLOv10x_gestures.pt")
# yolo_model = YOLO("F:/科研学习/yolov11/yolov11/yolov11/资料/模型文件/yolov8n.pt")
yolo_results = yolo_model(image)# 加载 SAM 模型
sam_model = sam_model_registry["vit_l"](checkpoint="C:/Users/张佳珲/Downloads/sam_vit_l_0b3195.pth")
predictor = SamPredictor(sam_model)# 将整个图像传递给 SAM 模型
predictor.set_image(np.array(image))  # 传递整个图像# 遍历 YOLO 检测结果并绘制边界框
for result in yolo_results:if len(result.boxes) > 0:  # 检查是否有检测到物体boxes = result.boxes.xyxy  # YOLO 边界框for box in boxes:# 画出 YOLO 边界框 (蓝色)x1, y1, x2, y2 = map(int, box)cv2.rectangle(image_cv, (x1, y1), (x2, y2), (255, 0, 0), 2)  # 蓝色框代表 YOLO 的检测# 使用 SAM 模型预测分割掩码masks, _, _ = predictor.predict(box=np.array([x1, y1, x2, y2]), multimask_output=False)# 获取掩码并直接叠加到原图上mask = masks[0]  # 使用第一个掩码mask_uint8 = mask.astype(np.uint8)  # 将布尔掩码转换为 uint8 类型# 调整掩码大小为与原图一致,并直接叠加到原图上mask_resized = cv2.resize(mask_uint8, (image_cv.shape[1], image_cv.shape[0]), interpolation=cv2.INTER_NEAREST)image_cv[mask_resized == 1] = [0, 0, 255]  # 红色表示分割区域# 使用 Matplotlib 显示 YOLO 边界框和 SAM 分割的对比
fig, ax = plt.subplots(1, 1, figsize=(10, 10))# 显示叠加了 SAM 掩码和 YOLO 边界框的原图
ax.imshow(cv2.cvtColor(image_cv, cv2.COLOR_BGR2RGB))
ax.set_title("Original Image with SAM Segmentation and YOLO Bounding Box")plt.show()

http://www.zhongyajixie.com/news/57894.html

相关文章:

  • 网站建设哈尔滨网站优化4西seo优化排名
  • 广告投放这个工作难不难做seo主要做什么工作内容
  • 网站制作报价是否合法万秀服务不错的seo推广
  • 江苏专业网站制作自己如何注册一个网站
  • 东莞市网站建设系统企业长沙网站开发
  • 用什么自己做网站百度链接地址
  • 创意广告设计网站seo服务 文库
  • 建立多个wordpress北京度seo排名
  • 邢台市建设工程质量监督网站谷歌三件套下载
  • 网站开发技术路线百度搜索广告收费标准
  • wordpress图片位置seo实战培训学校
  • 怎么建设网站视频教程东莞网络营销公司
  • 有没有专门交人做美食的视频网站咨询公司
  • 网站平台建立网络视频营销平台
  • 网站后台管理员做链接有什么平台可以推广
  • wordpress怎么添加导航分类百度优化大师
  • photoshop网站模板设计教程今日头条热搜榜前十名
  • 网站定制开发什么意思seo搜索引擎优化排名报价
  • 兰州做网站的公司抖音seo代理
  • 在线播放的网站怎么做淘宝搜索关键词排名查询工具
  • 做美剧盗版网站网络营销工具体系
  • 沈阳男科医院哪家好一些百度seo找哪里
  • 西安关键词排名软件兰州正规seo整站优化
  • com网站注册域名哪里可以代写软文
  • 检测ai写作的网站如何查询域名注册人信息
  • 现在流行的网站制作工具百度云搜索引擎
  • 专业app网站建设深圳网络推广培训
  • 怎么用visual studio做网站樱桃bt磁力天堂
  • 比较好的网站开发百度小说官网
  • 中山做网站百度指数数据官网