当前位置: 首页 > news >正文

移动端网站开发公司网络营销推广经验总结

移动端网站开发公司,网络营销推广经验总结,个人做淘宝客网站要备案,sever2012做网站此动态规划系列主要讲解大约10个系列【后续持续更新】 本篇讲解简单多状态模型中的9道经典题,会在讲解题目同时给出AC代码 目录 1、按摩师 2、力扣198:打家劫舍1 3、打家劫舍II 4、删除并获得点数 5、 粉刷房子 6、力扣309:买卖股票的最佳时机含冷冻期 7、 买…

此动态规划系列主要讲解大约10个系列【后续持续更新】

本篇讲解简单多状态模型中的9道经典题,会在讲解题目同时给出AC代码

目录

1、按摩师

2、力扣198:打家劫舍1

3、打家劫舍II

4、删除并获得点数

5、 粉刷房子

6、力扣309:买卖股票的最佳时机含冷冻期

7、 买卖股票的最佳时机含手续费

 8、买卖股票的最佳时机III

9、买卖股票的最佳时机IV


1、按摩师

示例分析: 

class Solution {
public:int massage(vector<int>& nums) {int n = nums.size();if (n == 0) return 0;//创建两个dp表f和gvector<int> f(n);//n个数据都会初始化为0auto g = f;//创建g表f[0] = nums[0]; //初始化for (int i = 1; i < n; i++){f[i] = g[i - 1] + nums[i];g[i] = max(f[i - 1], g[i - 1]);}return max(f[n - 1], g[n - 1]); }
};

借多状态dp的题说明一下,怎么判断是一维dp还是二维dp呢?

由状态表示决定的,如果一维数组能表示清楚,就用一维的,表示不清楚,就可以尝试增加维数,用二维的,有时候其实三维的也有,但是情况少。 


2、力扣198:打家劫舍1

 这道题跟上道题的按摩师的思路和代码基本一样

class Solution {
public:int rob(vector<int>& nums) {int n = nums.size();vector<int> f(n);auto g = f;f[0] = nums[0];for (int i = 1; i < n; i++){f[i] = g[i - 1] + nums[i];g[i] = max(g[i - 1], f[i - 1]);}return max(f[n - 1], g[n - 1]);}
};

3、打家劫舍II

这道题只是在上一道题的打家劫舍1中加了一个限制条件,即首尾也算相连,不能都偷窃,所以只需分类讨论下这个情况,再转换为打家劫舍1即可(下面的rob1表示的是可以偷的范围,也就是可以用打家劫舍1来求解的地方)

class Solution {
public:int rob(vector<int>& nums) {int n = nums.size();return max(nums[0] + rob1(nums, 2, n - 2), rob1(nums, 1, n - 1));}int rob1(vector<int>& nums, int left, int right){if (left > right) return 0;//处理边界条件int n = nums.size();//按理说开right-left+1个空间即可,但这里多开几个也没事vector<int> f(n);auto g = f;f[left] = nums[left];//初始化for (int i = left + 1; i <= right; i++){f[i] = g[i - 1] + nums[i];g[i] = max(f[i - 1], g[i - 1]);}return max(f[right], g[right]);}
};

4、删除并获得点数

 动态规划的预处理思路:

其实上面的思想就是利用哈希表中的直接映射法,那么这种方法就要找nums数组中的最大值,但是题目中已经给出了nums数组中每个值的范围,故可以直接开空间大小为最大值。并且这种方法既做到了数据有序又做到了连续 

整体思路: 

class Solution {
public:int deleteAndEarn(vector<int>& nums) {const int N = 10001;//数组中的最大值为1万,多开1个防止越界问题//1、预处理int arr[N] = {0};for (const auto& x : nums) arr[x] += x;//2、利用打家劫舍思路求解该问题vector<int> f(N);auto g = f;//这里不用初始化了,因为f[0]=arr[0],可arr[0]本来就=0for (int i = 1; i < N; i++){f[i] = g[i - 1] + arr[i];g[i] = max(f[i - 1], g[i - 1]);}return max(f[N - 1], g[N - 1]);}
};

5、 粉刷房子

解释示例1和示例2:

也就是判断当前位置是第几个房子,只需看行即可,列是代表颜色的 

 总体思路:

下面说的位置可以理解为是一个房子

理解本题的虚拟节点: 

class Solution {
public:int minCost(vector<vector<int>>& costs) {int n = costs.size();//得到的是行数,即现有的房子数vector<vector<int>> dp(n + 1, vector<int> (3));//多开一行给虚拟节点//从上到下遍历每个房子,算出每个房子对应不同颜色的价格for (int i = 1; i <= n; i++){//因为多开了一个虚拟节点,所以要加上cost[i-1][0],这里要用i-1才行dp[i][0] = min(dp[i - 1][1], dp[i - 1][2]) + costs[i- 1][0];dp[i][1] = min(dp[i - 1][0], dp[i - 1][2]) + costs[i- 1][1];dp[i][2] = min(dp[i - 1][1], dp[i - 1][0]) + costs[i- 1][2];}return min(min(dp[n][0], dp[n][1]), dp[n][2]);}
};

6、力扣309:买卖股票的最佳时机含冷冻期

题目分析: 

如果是多状态,并且多状态之间可以相互转移的话 ,为了不忽略某种状态,我们可以画一个图,如下图,我们也称为这种图为状态机

class Solution {
public:int maxProfit(vector<int>& prices) {int n = prices.size();vector<vector<int>> dp(n, vector<int>(3));//三个dp表dp[0][0] = -prices[0];//初始化 for (int i = 1; i < n; ++i){dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]);dp[i][1] = max(dp[i - 1][1], dp[i - 1][2]);dp[i][2] = dp[i - 1][0] + prices[i];}//最佳答案一定不会是dp[n - 1][0],所以最后不用考虑在内return max(dp[n - 1][1], dp[n - 1][2]);}
};

7、 买卖股票的最佳时机含手续费

 示例解释:

 箭头起始位置:前一天结束后的状态,箭头指向位置:当天结束状态

class Solution {
public:int maxProfit(vector<int>& prices, int fee) {int n = prices.size();vector<int> f(n);auto g = f;f[0] = -prices[0];//初始化:第0天结束后处于买入状态for (int i = 1; i < n; i++){f[i] = max(f[i- 1], g[i - 1] - prices[i]);g[i] = max(f[i - 1] + prices[i] - fee, g[i - 1]);}//最后一天手里还有股票,肯定就不是最优解,故不用考虑return g[n - 1];}
};

 当然,像之间那种开二维数组也可以,但是三种状态及以上才推荐开二维数组,下面这么写也可以


 8、买卖股票的最佳时机III

示例分析:

此题复杂在还要考虑交易的次数。

买入是指手里有股票的状态,卖出是指手里没股票,是一个可交易的状态。下图的线的含义,线的起点表示前一天结束后的状态,线表示当天的操作,箭头所指的表示当天结束后的状态 

 但是因为f和g表初始化的不一致,可又不想在循环外再初始化哪个特例,就用稍微修改状态转移方程的方法来便于统一的初始化

class Solution {
public:const int INF = 0x3f3f3f;//int最大值的一半int maxProfit(vector<int>& prices) {int n = prices.size();vector<vector<int>> f(n, vector<int>(3, -INF));auto g = f;//初始化f和g表的第一行的第一个元素f[0][0] = -prices[0], g[0][0] = 0;for (int i = 1; i < n; i++){for (int j = 0; j < 3; j++){f[i][j] = max(f[i - 1][j], g[i - 1][j] - prices[i]);//天数不会越界,因为在这之前f和g表已经初始化了g[i][j] = g[i - 1][j];if (j - 1 >= 0){   //要么j-1交易次数存在,则考虑这种情况,//要么不存在,那么g[i][j]就直接=g[i-1][j]g[i][j] = max(g[i][j], f[i -1][j - 1] + prices[i]);}}}//找到g表最后一行的最大值int ret = 0;for (int i = 0; i < 3; i++)ret = max(g[n - 1][i], ret);return ret;         }
};

9、买卖股票的最佳时机IV

本题跟买卖股票的最佳时机III的分析思路基本一模一样,但是本题多了一个细节问题,即优化时间复杂度

 

 

class Solution {
public:const int INF = 0x3f3f3f3f;int maxProfit(int k, vector<int>& prices) {int n = prices.size();k = min(k, n / 2);//处理细节问题vector<vector<int>> f(n, vector<int>(k + 1, -INF));auto g = f;f[0][0] = -prices[0], g[0][0] = 0;for (int i = 1; i < n; i++){//因为第一行已经初始化了,所以i从1开始for (int j = 0; j <= k; j++){f[i][j] = max(f[i - 1][j], g[i - 1][j] - prices[i]);g[i][j] = g[i - 1][j];if (j - 1 >= 0)g[i][j] = max(g[i][j], f[i - 1][j - 1] + prices[i]);}}int ret = 0;for (int i = 0; i <= k; i++)ret = max(ret, g[n - 1][i]);return ret;}
};

http://www.zhongyajixie.com/news/55789.html

相关文章:

  • 开发公司安全工作总结汇报google seo是什么啊
  • java 自动登录网站东莞网站建设市场
  • 南通网站建设案例百度app客服人工在线咨询
  • 征纳互动平台重庆百度推广关键词优化
  • 网站招聘方案怎么做百度关键词检测工具
  • 网站建设帝国优化设计电子版在哪找
  • 如何替换网站网站建站模板
  • 宣城网站优化今日十大热点新闻头条
  • 资源网站哪个好网络营销的5种营销方式
  • 360做网站荆州seo优化易下拉霸屏
  • 做团购网站百度指数在线查询前100
  • 网站改标题降权谷歌浏览器手机版免费官方下载
  • 后台更新的内容在网站上不显示百度信息流代运营
  • 盐城网站优化方案新乡百度关键词优化外包
  • 苏宁网站优化与推广百度搜索一下就知道
  • 30岁转行做网站编辑网络优化工程师吃香吗
  • 自己个人网站后台怎么做自己个人怎样做电商
  • 百度做的网站 后台管理怎么进入上海百度
  • 云南做网站找谁义乌百度广告公司
  • 北京营销网站建站公司seo项目分析
  • 织梦网站环境qq营销软件
  • 高端网站开发公司新乡seo优化
  • server2008做DNS与网站百度网站提交入口网址
  • 做网站如何提需求推广app赚佣金平台
  • 收录网站是怎么做的网站seo优化方案策划书
  • 大学生做网站兼职站长工具网站
  • 可以做微网站的第三方平台有哪些网站优化排名操作
  • 外网访问wordpress全站路径设置网站换了域名怎么查
  • 商丘做网站哪家好怎么优化自己公司的网站
  • 潍坊学校网站建设中国疫情今天最新消息