当前位置: 首页 > news >正文

经营性网站备案流程图企业网站营销优缺点

经营性网站备案流程图,企业网站营销优缺点,wordpress多站点可视化,娄底市建设网站目录 一、实验内容 二、实验过程 2.1 准备数据集 2.2 SIFT特征提取 2.3 学习“视觉词典”(vision vocabulary) 2.4 建立图像索引并保存到数据库中 2.5 用一幅图像查询 三、实验小结 一、实验内容 实现基于颜色直方图、bag of word等方法的以图搜…

目录

一、实验内容

二、实验过程

2.1 准备数据集

2.2 SIFT特征提取

2.3 学习“视觉词典”(vision vocabulary)

2.4 建立图像索引并保存到数据库中

2.5 用一幅图像查询

三、实验小结


一、实验内容

  1. 实现基于颜色直方图、bag of word等方法的以图搜图,打印图片特征向量、图片相似度等
  2. 打印视觉词典大小、可视化部分特征基元、可视化部分图片的频率直方图

二、实验过程

2.1 准备数据集

如图1所示,这里准备的文件夹中含有100张实验图片。

图1
2.2 SIFT特征提取

2.2.1 实验代码

import os
import cv2
import numpy as np
from PCV.tools.imtools import get_imlist
#获取图像列表
imlist = get_imlist(r'D:\Computer vision\20241217dataset')
nbr_images = len(imlist)
#生成特征文件路径
featlist = [os.path.splitext(imlist[i])[0] + '.sift' for i in range(nbr_images)]
#创建sift对象
sift = cv2.SIFT_create()
#提取sift特征并保存
for i in range(nbr_images):try:img = cv2.imread(imlist[i], cv2.IMREAD_GRAYSCALE)if img is None:raise ValueError(f"Image {imlist[i]} could not be read")keypoints, descriptors = sift.detectAndCompute(img, None)locs = np.array([[kp.pt[0], kp.pt[1], kp.size, kp.angle] for kp in keypoints])np.savetxt(featlist[i], np.hstack((locs, descriptors)))print(f"Processed {imlist[i]} to {featlist[i]}")except Exception as e:print(f"Failed to process {imlist[i]}: {e}")
#可视化sift特征
def visualize_sift_features(image_path, feature_path):img = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)if img is None:raise ValueError(f"Image {image_path} could not be read")features = np.loadtxt(feature_path)locs = features[:, :4]descriptors = features[:, 4:]img_with_keypoints = cv2.drawKeypoints(img, [cv2.KeyPoint(x=loc[0], y=loc[1], _size=loc[2], _angle=loc[3]) for loc in locs], outImage=np.array([]))plt.figure(figsize=(10, 10))plt.imshow(img_with_keypoints, cmap='gray')plt.title('SIFT Features Visualization')plt.axis('off')plt.show()visualize_sift_features(imlist[0], featlist[0])

2.2.2 结果展示

 如图2所示,对文件夹中的所有图片使用sift特征描述子,图3展示了对第一个图像的SIFT特征的可视化。

图2
图3
2.3 学习“视觉词典”(vision vocabulary)

2.3.1 实验代码

(1)vocabulary.py文件

from numpy import *
from scipy.cluster.vq import *
from PCV.localdescriptors import sift
#构建视觉词汇表
class Vocabulary(object):#初始化方法def __init__(self,name):self.name = nameself.voc = []self.idf = []self.trainingdata = []self.nbr_words = 0#训练过程def train(self,featurefiles,k=100,subsampling=10):nbr_images = len(featurefiles)descr = []descr.append(sift.read_features_from_file(featurefiles[0])[1])descriptors = descr[0] for i in arange(1,nbr_images):descr.append(sift.read_features_from_file(featurefiles[i])[1])descriptors = vstack((descriptors,descr[i]))#使用K-means聚类生成视觉单词self.voc,distortion = kmeans(descriptors[::subsampling,:],k,1)self.nbr_words = self.voc.shape[0]#生成视觉单词的直方图imwords = zeros((nbr_images,self.nbr_words))for i in range( nbr_images ):imwords[i] = self.project(descr[i])nbr_occurences = sum( (imwords > 0)*1 ,axis=0)#计算每个视觉单词的逆文档频率self.idf = log( (1.0*nbr_images) / (1.0*nbr_occurences+1) )self.trainingdata = featurefiles#投影方法def project(self,descriptors):imhist = zeros((self.nbr_words))words,distance = vq(descriptors,self.voc)for w in words:imhist[w] += 1return imhistdef get_words(self,descriptors):return vq(descriptors,self.voc)[0]

(2)visual vocabulary.py文件

import pickle
from PCV.imagesearch import vocabulary
from PCV.tools.imtools import get_imlistimlist = get_imlist(r'D:\Computer vision\20241217dataset')
nbr_images = len(imlist)featlist = [imlist[i][:-3] + 'sift' for i in range(nbr_images)]
voc = vocabulary.Vocabulary('bof_test')
voc.train(featlist, 50, 10)with open(r'D:\Computer vision\20241217dataset\vocabulary50.pkl', 'wb') as f:pickle.dump(voc, f)
print('vocabulary is:', voc.name, voc.nbr_words)

2.3.2 结果展示

 如图4所示,打印视觉词典的名称和长度

图4
2.4 建立图像索引并保存到数据库中

2.4.1 实验代码

(1)imagesearch.py文件

from numpy import *
import pickle
import sqlite3 as sqlite
from functools import cmp_to_keyclass Indexer(object):def __init__(self,db,voc):self.con = sqlite.connect(db)self.voc = vocdef __del__(self):self.con.close()def db_commit(self):self.con.commit()def get_id(self,imname):cur = self.con.execute("select rowid from imlist where filename='%s'" % imname)res=cur.fetchone()if res==None:cur = self.con.execute("insert into imlist(filename) values ('%s')" % imname)return cur.lastrowidelse:return res[0] def is_indexed(self,imname):im = self.con.execute("select rowid from imlist where filename='%s'" % imname).fetchone()return im != Nonedef add_to_index(self,imname,descr):if self.is_indexed(imname): returnprint ('indexing', imname)imid = self.get_id(imname)imwords = self.voc.project(descr)nbr_words = imwords.shape[0]for i in range(nbr_words):word = imwords[i]self.con.execute("insert into imwords(imid,wordid,vocname) values (?,?,?)", (imid,word,self.voc.name))self.con.execute("insert into imhistograms(imid,histogram,vocname) values (?,?,?)", (imid,pickle.dumps(imwords),self.voc.name))def create_tables(self): self.con.execute('create table imlist(filename)')self.con.execute('create table imwords(imid,wordid,vocname)')self.con.execute('create table imhistograms(imid,histogram,vocname)')        self.con.execute('create index im_idx on imlist(filename)')self.con.execute('create index wordid_idx on imwords(wordid)')self.con.execute('create index imid_idx on imwords(imid)')self.con.execute('create index imidhist_idx on imhistograms(imid)')self.db_commit()def cmp_for_py3(a, b):return (a > b) - (a < b)class Searcher(object):def __init__(self,db,voc):self.con = sqlite.connect(db)self.voc = vocdef __del__(self):self.con.close()def get_imhistogram(self, imname):cursor = self.con.execute("select rowid from imlist where filename='%s'" % imname)row = cursor.fetchone()if row is None:raise ValueError(f"No entry found in imlist for filename: {imname}")im_id = row[0]cursor = self.con.execute("select histogram from imhistograms where rowid=%d" % im_id)s = cursor.fetchone()if s is None:raise ValueError(f"No histogram found for rowid: {im_id}")return pickle.loads(s[0])def candidates_from_word(self,imword):im_ids = self.con.execute("select distinct imid from imwords where wordid=%d" % imword).fetchall()return [i[0] for i in im_ids]def candidates_from_histogram(self,imwords):words = imwords.nonzero()[0]candidates = []for word in words:c = self.candidates_from_word(word)candidates+=ctmp = [(w,candidates.count(w)) for w in set(candidates)]tmp.sort(key=cmp_to_key(lambda x,y:cmp_for_py3(x[1],y[1])))tmp.reverse()return [w[0] for w in tmp] def query(self, imname):try:h = self.get_imhistogram(imname)except ValueError as e:print(e)return []candidates = self.candidates_from_histogram(h)matchscores = []for imid in candidates:cand_name = self.con.execute("select filename from imlist where rowid=%d" % imid).fetchone()cand_h = self.get_imhistogram(cand_name)cand_dist = sqrt(sum(self.voc.idf * (h - cand_h) ** 2))matchscores.append((cand_dist, imid))matchscores.sort()return matchscoresdef get_filename(self,imid):s = self.con.execute("select filename from imlist where rowid='%d'" % imid).fetchone()return s[0]def tf_idf_dist(voc,v1,v2):v1 /= sum(v1)v2 /= sum(v2)return sqrt( sum( voc.idf*(v1-v2)**2 ) )def compute_ukbench_score(src,imlist):nbr_images = len(imlist)pos = zeros((nbr_images,4))for i in range(nbr_images):pos[i] = [w[1]-1 for w in src.query(imlist[i])[:4]]score = array([ (pos[i]//4)==(i//4) for i in range(nbr_images)])*1.0return sum(score) / (nbr_images)from PIL import Image
from pylab import *def plot_results(src,res):figure()nbr_results = len(res)for i in range(nbr_results):imname = src.get_filename(res[i])subplot(1,nbr_results,i+1)imshow(array(Image.open(imname)))axis('off')show()

(2)quantizeSet.py文件

import pickle
from PCV.imagesearch import imagesearch
from PCV.localdescriptors import sift
import sqlite3
from PCV.tools.imtools import get_imlist
import cv2
import matplotlib.pyplot as pltimlist = get_imlist(r'D:\Computer vision\20241217dataset')
nbr_images = len(imlist)featlist = [imlist[i][:-3] + 'sift' for i in range(nbr_images)]with open(r'D:\Computer vision\20241217dataset\vocabulary50.pkl', 'rb') as f:voc = pickle.load(f)
indx = imagesearch.Indexer('D:\\Computer vision\\20241217CODES\\testImaAdd.db', voc)
indx.create_tables()
for i in range(nbr_images)[:100]:locs, descr = sift.read_features_from_file(featlist[i])indx.add_to_index(imlist[i], descr)
indx.db_commit()
con = sqlite3.connect('D:\\Computer vision\\20241217CODES\\testImaAdd.db')
print(con.execute('select count (filename) from imlist').fetchone())
print(con.execute('select * from imlist').fetchone())
searcher = imagesearch.Searcher('D:\\Computer vision\\20241217CODES\\testImaAdd.db', voc)image_files = imlist[:5]for image_file in image_files:histogram = searcher.get_imhistogram(image_file)plt.figure()plt.title(image_file)plt.bar(range(len(histogram)), histogram)plt.xlabel('Word ID')plt.ylabel('Frequency')plt.show()

2.4.2 结果展示

如图5所示,对数据集中的所有图像进行量化,为所有图像创建索引,再遍历所有的图像,将它们的特征投影到词汇上,最终提交到数据库保存下来(如图6)。图7、图8展示了部分图像的频率直方图。

图5
图6
图7
图8
2.5 用一幅图像查询

2.5.1 实验代码

import pickle
from PCV.imagesearch import imagesearch
from PCV.geometry import homography
from PCV.tools.imtools import get_imlist
import numpy as np
import cv2
import warnings
warnings.filterwarnings("ignore")imlist = get_imlist(r'D:\Computer vision\20241217dataset')
nbr_images = len(imlist)
featlist = [imlist[i][:-3] + 'sift' for i in range(nbr_images)]with open(r'D:\Computer vision\20241217dataset\vocabulary50.pkl', 'rb') as f:voc = pickle.load(f, encoding='iso-8859-1')src = imagesearch.Searcher(r'D:\Computer vision\20241217CODES\testImaAdd.db', voc)q_ind = 3
nbr_results = 10res_reg = [w[1] for w in src.query(imlist[q_ind])[:nbr_results]] 
print('top matches (regular):', res_reg)img = cv2.imread(imlist[q_ind])
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
sift = cv2.SIFT_create()
kp, q_descr = sift.detectAndCompute(gray, None)
q_locs = np.array([[kp[i].pt[0], kp[i].pt[1]] for i in range(len(kp))])
fp = homography.make_homog(q_locs[:, :2].T)model = homography.RansacModel()
rank = {}bf = cv2.BFMatcher() 
for ndx in res_reg[1:]:if ndx >= len(imlist):print(f"Index {ndx} is out of range for imlist with length {len(imlist)}")continueimg = cv2.imread(imlist[ndx])gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)kp, descr = sift.detectAndCompute(gray, None)locs = np.array([[kp[i].pt[0], kp[i].pt[1]] for i in range(len(kp))])matches = bf.knnMatch(q_descr, descr, k=2)good_matches = []for m, n in matches:if m.distance < 0.75 * n.distance:good_matches.append(m)ind = [m.queryIdx for m in good_matches]ind2 = [m.trainIdx for m in good_matches]tp = homography.make_homog(locs[:, :2].T)try:H, inliers = homography.H_from_ransac(fp[:, ind], tp[:, ind2], model, match_theshold=4)except:inliers = []# store inlier countrank[ndx] = len(inliers)sorted_rank = sorted(rank.items(), key=lambda t: t[1], reverse=True)
res_geom = [res_reg[0]] + [s[0] for s in sorted_rank]
print('top matches (homography):', res_geom)def calculate_similarity(query_index, result_indices, imlist):similarities = []for res_index in result_indices:if res_index >= len(imlist):print(f"Index {res_index} is out of range for imlist with length {len(imlist)}")continueimg1 = cv2.imread(imlist[query_index])img2 = cv2.imread(imlist[res_index])gray1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)gray2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)sift = cv2.SIFT_create()kp1, des1 = sift.detectAndCompute(gray1, None)kp2, des2 = sift.detectAndCompute(gray2, None)bf = cv2.BFMatcher()matches = bf.knnMatch(des1, des2, k=2)good_matches = []for m, n in matches:if m.distance < 0.75 * n.distance:good_matches.append(m)similarity = len(good_matches) / min(len(kp1), len(kp2))similarities.append((res_index, similarity))return similaritiesquery_index = q_ind
result_indices = res_reg + res_geom
similarities = calculate_similarity(query_index, result_indices, imlist)print("Similarity scores:")
for index, score in similarities:print(f"Image {index}: {score:.4f}")imagesearch.plot_results(src, res_reg)
imagesearch.plot_results(src, res_geom)
imagesearch.plot_results(src, res_reg[:6])
imagesearch.plot_results(src, res_geom[:6])  

2.5.2  结果展示

如图9所示,根据给定的查询图像索引q_ind,执行常规查询,返回前nbr_results个匹配结果,并打印这些结果以及可视化图片。

图 9 维度=50(常规排序)

如图10所示,使用 RANSAC 模型拟合单应性找到与查询图像几何一致的候选图像。

图 10 维度=50(重排序)

 如图11所示,计算查询图像与候选图像之间的相似度分数,并返回一个包含相似度分数的列表。

图11

当生成不同维度视觉词典时,常规排序结果如图12所示。

图 12 维度=10(常规排序)

三、实验小结

图像检索是一项重要的计算机视觉任务,它在根据用户的输入(如图像或关键词),从图像数据库中检索出最相关的图像。Bag of Feature 是一种图像特征提取方法,参考Bag of Words的思路,把每幅图像描述为一个局部区域/关键点(Patches/Key Points)特征的无序集合。同时从图像抽象出很多具有代表性的「关键词」,形成一个字典,再统计每张图片中出现的「关键词」数量,得到图片的特征向量。

http://www.zhongyajixie.com/news/52225.html

相关文章:

  • wordpress采集翻译插件seo关键词怎么选择
  • 什么是网站前置审批站长工具seo综合查询 分析
  • 网络营销内容定位抖音seo关键词排名技术
  • 模拟人生4做游戏下载网站海底捞口碑营销
  • 深圳网站制作首选灵点网络抖音关键词排名系统
  • 做视频网站需要哪些条件足球联赛排名
  • 自做的网站如何发布链接搜索引擎
  • 网站页面设计怎么收费推广平台网站
  • 网站建设和实现网站推广引流最快方法
  • 网站开发功能描述电商运营推广是做什么的
  • css做企业网站百度左侧排名
  • 网站建设法律微信广点通广告平台
  • 宝安网站建设公司百度咨询电话人工台
  • 网站建设经费预算计划百度软件商店下载安装
  • 便宜建站vps企业网络营销青岛
  • 自己做网站上传相册seo sem是什么职位
  • 莱芜网站建设好的seo公司营销网
  • 哪个网站能在百度做推广网站搜索量查询
  • 响应式网站切图武汉it培训机构排名前十
  • 网站背景图片优化营销宝
  • 网站后台编辑器编辑内容无法显示个人如何注册网站
  • 做网站 除了域名网站权重划分
  • 陈塘庄网站建设百度浏览器网页
  • 镇江做网站网销是什么工作好做吗
  • 用phpcms做的网站模板西安网站建设公司
  • 昆明住房和城乡建设部网站淄博seo公司
  • 企业网站用哪个cms好网站友情链接的作用
  • 增城百度做网站多少钱站长之家查询域名
  • 企业网站优化推广专员
  • 自适应网站制作肇庆网站制作软件