当前位置: 首页 > news >正文

网站建设价钱seo是什么意思的缩写

网站建设价钱,seo是什么意思的缩写,营销型网站 财务咨询公司,做电子政务网站Pytorch中张量矩阵乘法函数使用说明 1 torch.mm() 函数1.1 torch.mm() 函数定义及参数1.2 torch.bmm() 官方示例 2 torch.bmm() 函数2.1 torch.bmm() 函数定义及参数2.2 torch.bmm() 官方示例 3 torch.matmul() 函数3.1 torch.matmul() 函数定义及参数3.2 torch.matmul() 规则约…

Pytorch中张量矩阵乘法函数使用说明

  • 1 torch.mm() 函数
    • 1.1 torch.mm() 函数定义及参数
    • 1.2 torch.bmm() 官方示例
  • 2 torch.bmm() 函数
    • 2.1 torch.bmm() 函数定义及参数
    • 2.2 torch.bmm() 官方示例
  • 3 torch.matmul() 函数
    • 3.1 torch.matmul() 函数定义及参数
    • 3.2 torch.matmul() 规则约定
    • 3.3 torch.matmul() 官方示例
    • 3.4 高维数据实例解释
  • 参考博文及感谢

1 torch.mm() 函数

全称为matrix-matrix product,对输入的张量做矩阵乘法运算,输入输出维度一定是2维

1.1 torch.mm() 函数定义及参数

torch.bmm(input, mat2, , out=None) → Tensor
input (Tensor) – – 第一个要相乘的矩阵
** mat2
* (Tensor) – – 第二个要相乘的矩阵
不支持广播到通用形状、类型推广以及整数、浮点和复杂输入。

1.2 torch.bmm() 官方示例

mat1 = torch.randn(2, 3)
mat2 = torch.randn(3, 3)
torch.mm(mat1, mat2)tensor([[ 0.4851,  0.5037, -0.3633],[-0.0760, -3.6705,  2.4784]])

2 torch.bmm() 函数

全称为batch matrix-matrix product,对输入的张量做矩阵乘法运算,输入输出维度一定是3维;

2.1 torch.bmm() 函数定义及参数

torch.bmm(input, mat2, , out=None) → Tensor
input (Tensor) – – 第一批要相乘的矩阵
** mat2
* (Tensor) – – 第二批要相乘的矩阵
不支持广播到通用形状、类型推广以及整数、浮点和复杂输入。

2.2 torch.bmm() 官方示例

input = torch.randn(10, 3, 4)
mat2 = torch.randn(10, 4, 5)
res = torch.bmm(input, mat2)
res.size()torch.Size([10, 3, 5])

3 torch.matmul() 函数

可进行多维矩阵运算,根据不同输入维度进行广播机制然后运算,和点积类似,广播机制可参考之前博文torch.mul()函数。

3.1 torch.matmul() 函数定义及参数

torch.matmul(input, mat2, , out=None) → Tensor
input (Tensor) – – 第一个要相乘的张量
** mat2
* (Tensor) – – 第二个要相乘的张量
支持广播到通用形状、类型推广以及整数、浮点和复杂输入。

3.2 torch.matmul() 规则约定

(1)若两个都是1D(向量)的,则返回两个向量的点积;

(2)若两个都是2D(矩阵)的,则按照(矩阵相乘)规则返回2D;

(3)若input维度1D,other维度2D,则先将1D的维度扩充到2D(1D的维数前面+1),然后得到结果后再将此维度去掉,得到的与input的维度相同。即使作扩充(广播)处理,input的维度也要和other维度做对应关系;

(4)若input是2D,other是1D,则返回两者的点积结果;

(5)如果一个维度至少是1D,另外一个大于2D,则返回的是一个批矩阵乘法( a batched matrix multiply)

  • (a)若input是1D,other是大于2D的,则类似于规则(3);
  • (b)若other是1D,input是大于2D的,则类似于规则(4);
  • (c)若input和other都是3D的,则与torch.bmm()函数功能一样;
  • (d)如果input中某一维度满足可以广播(扩充),那么也是可以进行相乘操作的。例如 input(j,1,n,m)* other (k,m,p) = output(j,k,n,p)

matmul() 根据输入矩阵自动决定如何相乘。低维根据高维需求,合理广播。

3.3 torch.matmul() 官方示例

# vector x vector
tensor1 = torch.randn(3)
tensor2 = torch.randn(3)
torch.matmul(tensor1, tensor2).size()torch.Size([])
# matrix x vector
tensor1 = torch.randn(3, 4)
tensor2 = torch.randn(4)
torch.matmul(tensor1, tensor2).size()torch.Size([3])
# batched matrix x broadcasted vector
tensor1 = torch.randn(10, 3, 4)
tensor2 = torch.randn(4)
torch.matmul(tensor1, tensor2).size()torch.Size([10, 3])
# batched matrix x batched matrix
tensor1 = torch.randn(10, 3, 4)
tensor2 = torch.randn(10, 4, 5)
torch.matmul(tensor1, tensor2).size()torch.Size([10, 3, 5])
# batched matrix x broadcasted matrix
tensor1 = torch.randn(10, 3, 4)
tensor2 = torch.randn(4, 5)
torch.matmul(tensor1, tensor2).size()torch.Size([10, 3, 5])

3.4 高维数据实例解释

直接看一个4维的二值例子,先看图(红虚线和实线是为了便于区分维度而添加),不懂再结合代码和结果分析,先做广播,然后对应矩阵进行乘积运算
在这里插入图片描述

代码如下:

import torch
import numpy as npnp.random.seed(2022)
a = np.random.randint(low=0, high=2, size=(2, 2, 3, 4))
a = torch.tensor(a)
b = np.random.randint(low=0, high=2, size=(2, 1, 4, 3))
b = torch.tensor(b)
c = torch.matmul(a, b)
# or
# c = a @ b
print(a)
print("=============================================")
print(b)
print("=============================================")
print(c.size())
print("=============================================")
print(c)

运行结果为:

tensor([[[[1, 0, 1, 0],[1, 1, 0, 1],[0, 0, 0, 0]],[[1, 1, 1, 1],[1, 1, 0, 0],[0, 1, 0, 1]]],[[[0, 0, 0, 1],[0, 0, 0, 1],[0, 1, 0, 0]],[[1, 1, 1, 1],[1, 1, 1, 1],[0, 0, 0, 0]]]], dtype=torch.int32)
=============================================
tensor([[[[0, 1, 0],[1, 1, 0],[0, 0, 0],[1, 1, 0]]],[[[0, 1, 0],[1, 1, 1],[1, 1, 1],[1, 0, 1]]]], dtype=torch.int32)
=============================================
torch.Size([2, 2, 3, 3])
=============================================
tensor([[[[0, 1, 0],[2, 3, 0],[0, 0, 0]],[[2, 3, 0],[1, 2, 0],[2, 2, 0]]],[[[1, 0, 1],[1, 0, 1],[1, 1, 1]],[[3, 3, 3],[3, 3, 3],[0, 0, 0]]]], dtype=torch.int32)

参考博文及感谢

部分内容参考以下链接,这里表示感谢 Thanks♪(・ω・)ノ
参考博文1 官方文档查询地址
https://pytorch.org/docs/stable/index.html
参考博文2 Pytorch矩阵乘法之torch.mul() 、 torch.mm() 及torch.matmul()的区别
https://blog.csdn.net/irober/article/details/113686080

http://www.zhongyajixie.com/news/51928.html

相关文章:

  • 专门查企业信息的网站网域名解析ip查询
  • wordpress加密授权关键词优化公司排行
  • 合肥做网站价格宁波最好的推广平台
  • 个人做网站怎么赚钱东莞企业网站排名
  • 深圳做网站d互联网培训机构排名前十
  • thinkphp5做的网站网络营销八大工具
  • 做平台好还是做网站好福州关键词排名软件
  • 沈阳企业定制网站建设天津seo霸屏
  • 网站可以做的线下活动100个成功营销案例
  • 网站制作常用代码长春网站建设公司哪家好
  • 做网站公司上班违法吗seo优化技术排名
  • 网站模块是什么windows优化大师win10
  • 找人做时时彩网站在线网页编辑平台
  • 做电子政务网站seo关键词排名报价
  • 在线html网页编辑器优化服务公司
  • 咸阳网站开发公司电话在哪买网站链接
  • 网站建设广州公司哪家好营销咨询顾问
  • 网站刚做怎么做seo优化seo有哪些作用
  • 做网站建设推广好做吗百度网络营销推广
  • 做任务赚钱的网站百度推广和百度竞价有什么区别
  • 四川省住房和城乡建设厅网站域名站长工具seo推广 站长工具查询
  • 黄岩地区做环评立项在哪个网站网页生成
  • 手游网站怎么做产品营销方案
  • 白沟做网站昆明做网站的公司
  • wordpress 物流插件搜索引擎优化百度
  • 陈木胜怎么死的邹平县seo网页优化外包
  • 成都网站建设桔子科技网站收录平台
  • 怎么做才能把网站排名靠前b2b电子商务平台网站
  • 如何在家做电商网站 seo
  • 社工站建站流程百度推广客服电话