当前位置: 首页 > news >正文

求个没封的a站yw1129cmseo营销推广平台

求个没封的a站yw1129cm,seo营销推广平台,万维设计,wordpress4.9中文版目录 一、目的与要求 二、实验内容 三、实验步骤 1、安装Hadoop和Spark 2、HDFS常用操作 3、Spark读取文件系统的数据 四、结果分析与实验体会 一、目的与要求 1、掌握在Linux虚拟机中安装Hadoop和Spark的方法; 2、熟悉HDFS的基本使用方法; 3、掌…

目录

一、目的与要求

二、实验内容

三、实验步骤

1、安装Hadoop和Spark

2、HDFS常用操作

3、Spark读取文件系统的数据

四、结果分析与实验体会


一、目的与要求

1、掌握在Linux虚拟机中安装Hadoop和Spark的方法;
2、熟悉HDFS的基本使用方法;
3、掌握使用Spark访问本地文件和HDFS文件的方法。

二、实验内容

1、安装Hadoop和Spark

        进入Linux系统,完成Hadoop伪分布式模式的安装。完成Hadoop的安装以后,再安装Spark(Local模式)。

2、HDFS常用操作

        使用Hadoop提供的Shell命令完成如下操作:

(1)启动Hadoop,在HDFS中创建用户目录“/user/你的名字的拼音”。以张三同学为例,创建 /user/zhangsan ,下同;
(2)在Linux系统的本地文件系统的“/home/zhangsan”目录下新建一个文本文件test.txt,并在该文件中至少十行英文语句,然后上传到HDFS的“/user/zhangsan”目录下;
(3)把HDFS中“/user/zhangsan”目录下的test.txt文件,下载到Linux系统的本地文件系统中的“/tmp”目录下;
(4)将HDFS中“/user/zhangsan”目录下的test.txt文件的内容输出到终端中进行显示;
(5)在HDFS中的“/”目录下,创建子目录input,把HDFS中“/user/zhangsan”目录下的test.txt文件,复制到“/input”目录下;
(6)删除HDFS中“/user/zhangsan”目录下的test.txt文件;
(7)查找HDFS中所有的 .txt文件;
(8)使用hadoop-mapreduce-examples-3.1.3.jar程序对/input目录下的文件进行单词个数统计,写出运行命令,并验证运行结果。

3、Spark读取文件系统的数据

(1)在pyspark中读取Linux系统本地文件“/home/zhangsan/test.txt”,然后统计出文件的行数;
(2)在pyspark中读取HDFS系统文件“/user/zhangsan/test.txt”,然后统计出文件的行数;
(3)编写独立应用程序,读取HDFS系统文件“/user/zhangsan/test.txt”,然后统计出文件的行数;通过 spark-submit 提交到 Spark 中运行程序。

三、实验步骤

1、安装Hadoop和Spark

        进入Linux系统,完成Hadoop伪分布式模式的安装。完成Hadoop的安装以后,再安装Spark(Local模式)。具体安装步骤可以参照我前面写的博客:

大数据存储技术(1)—— Hadoop简介及安装配置-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/Morse_Chen/article/details/134833801Spark环境搭建和使用方法-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/Morse_Chen/article/details/134979681

2、HDFS常用操作

(1)启动Hadoop,在HDFS中创建用户目录“/user/你的名字的拼音”。以张三同学为例,创建 /user/zhangsan ,下同;

[root@bigdata zhc]# start-dfs.sh
[root@bigdata zhc]# jps

[root@bigdata zhc]# hdfs dfs -mkdir -p /user/zhc
[root@bigdata zhc]# hdfs dfs -ls /user

 

(2)在Linux系统的本地文件系统的“/home/zhangsan”目录下新建一个文本文件test.txt,并在该文件中至少十行英文语句,然后上传到HDFS的“/user/zhangsan”目录下;

[root@bigdata zhc]# cd /home/zhc
[root@bigdata zhc]# vi test.txt
[root@bigdata zhc]# hdfs dfs -put /home/zhc/test.txt /user/zhc

test.txt 文件内容如下: 

welcome to linux
hello hadoop
spark is fast
hdfs is good
start pyspark
use python
scala and R
great success
I love spark
ten

这里可以看到上传成功了。 

(3)把HDFS中“/user/zhangsan”目录下的test.txt文件,下载到Linux系统的本地文件系统中的“/tmp”目录下;

[root@bigdata zhc]# hdfs dfs -get /user/zhc/test.txt /tmp/

(4)将HDFS中“/user/zhangsan”目录下的test.txt文件的内容输出到终端中进行显示;

[root@bigdata zhc]# hdfs dfs -cat /user/zhc/test.txt

(5)在HDFS中的“/”目录下,创建子目录input,把HDFS中“/user/zhangsan”目录下的test.txt文件,复制到“/input”目录下;

[root@bigdata zhc]# hdfs dfs -cp /user/zhc/test.txt /input/

(6)删除HDFS中“/user/zhangsan”目录下的test.txt文件;

[root@bigdata zhc]# hdfs dfs -rm -f /user/zhc/test.txt

(7)查找HDFS中所有的 .txt文件;

[root@bigdata zhc]# hdfs dfs -ls -R / | grep -i '\.txt$'

(8)使用hadoop-mapreduce-examples-3.1.3.jar程序对/input目录下的test.txt文件进行单词个数统计,写出运行命令,并验证运行结果。

注意:在做这一步之前,要先启动yarn进程;
           指定输出结果的路径/output,该路径不能已存在。

先切换到 /usr/local/servers/hadoop/share/hadoop/mapreduce 路径下,然后再开始统计单词个数。

[root@bigdata zhc]# cd /usr/local/servers/hadoop/share/hadoop/mapreduce
[root@bigdata mapreduce]# hadoop jar hadoop-mapreduce-examples-3.1.3.jar wordcount /input/test.txt /output

输入命令查看HDFS文件系统中/output目录下的结果。 

[root@bigdata mapreduce]# hdfs dfs -ls /output
[root@bigdata mapreduce]# hdfs dfs -cat /output/part-r-00000

3、Spark读取文件系统的数据

先在终端启动Spark。

[root@bigdata zhc]# pyspark

 (1)在pyspark中读取Linux系统本地文件“/home/zhangsan/test.txt”,然后统计出文件的行数;

>>> textFile=sc.textFile("file:///home/zhc/test.txt")
>>> linecount=textFile.count()
>>> print(linecount)

(2)在pyspark中读取HDFS系统文件“/user/zhangsan/test.txt”(如果该文件不存在,请先创建),然后统计出文件的行数;

注意:由于在第2题的(6)问中,已经删除了HDFS中“/user/zhangsan”目录下的test.txt文件,所以这里要重新将test.txt文件从本地系统上传到HDFS中

[root@bigdata zhc]# hdfs dfs -put /home/zhc/test.txt /user/zhc
>>> textFile=sc.textFile("hdfs://localhost:9000/user/zhc/test.txt")
>>> linecount=textFile.count()
>>> print(linecount)

(3)编写独立应用程序,读取HDFS系统文件“/user/zhangsan/test.txt”,然后统计出文件的行数;通过 spark-submit 提交到 Spark 中运行程序。

[root@bigdata mycode]# vi CountLines_hdfs.py
[root@bigdata mycode]# spark-submit CountLines_hdfs.py 

CountLines_hdfs.py文件内容如下:

from pyspark import SparkContext
FilePath = "hdfs://localhost:9000/user/zhc/test.txt"
sc = SparkContext("local","Simple App")
data = sc.textFile(FilePath).cache( )
print("文件行数:",data.count())

四、结果分析与实验体会

        通过本次Spark实验,学会了如何安装、启动Hadoop和Spark,并掌握了HDFS的基本使用方法,使用Spark访问本地文件和HDFS文件的方法。在Linux系统的本地文件系统和在HDFS中分别进行各种文件操作,然后在Spark中读取文件系统的数据,并能统计文件的行数。
        在做第三题(2)时,在pyspark中读取HDFS系统文件“/user/zhangsan/test.txt”,要将第二题(6)中删除的test.txt文件重新上传到HDFS中,注意文件路径要写正确, file_path=“hdfs:///user/zhc/test.txt”。在第三题(3)中,可以修改如下路径中的文件 /usr/local/spark/conf/log4j.properties.template,将文件中内容 “log4j.rootCategory=INFO” 改为 “log4j.rootCategory=ERROR”,这样在输出结果时,就不会显示大量的INFO信息,使得结果更简化。

http://www.zhongyajixie.com/news/51643.html

相关文章:

  • 乐山住房和规划建设局门户网站百度搜索引擎首页
  • 网站域名到期怎么办百度搜索热度指数
  • 哪个网站可以做投资回测百度竞价代理商
  • 网站seo优化推广怎么做搜索引擎优化实训报告
  • 营销活动方案名称哪里有seo排名优化
  • 党政门户网站怎么做佛山市人民政府门户网站
  • 西安做网站-西安网站建设-西安网站制作-西安网络公司_千秋网络建网站有哪些步骤
  • 照片分享网站开发费用东莞网络优化服务商
  • 连江县住房和城乡建设局网站大数据营销的概念
  • 建设银行短信开通网站销售人员培训课程有哪些
  • 现在那个网站做视频最赚钱成都百度推广电话
  • 中建八局一公司待遇怎么样seo搜索引擎优化案例
  • 做搜狗pc网站软件下载中国制造网外贸平台
  • 网站建设有哪些技术软文广告经典案例200字
  • 海口网络平台网站开发游戏推广合作平台
  • 手机网站建设设计6seo新人怎么发外链
  • 网站后台数据分析怎么做深圳发布最新通告
  • 崇左做网站公司产品营销策划方案怎么做
  • 什么网站可以做英语题今日军事新闻头条打仗
  • 南通外贸建站电脑培训班电脑培训学校
  • 毕业设计代写网站全国疫情高峰感染进度查询
  • 重庆的汽车网站建设二级域名查询入口
  • WordPress无法发布临沂做网络优化的公司
  • 推进门户网站建设 用好用活推广方案有哪些
  • 网站空间怎么做优化网站的软件下载
  • 网站建设排行谷歌搜图
  • 哪里可以做虚拟货币网站网站运营
  • 免费网站做seo网络培训心得
  • 高端网站建设公司成都百度广告联盟下载
  • 交互式网站建设免费域名申请个人网站