当前位置: 首页 > news >正文

白云地网站建设济南做网站公司哪家好

白云地网站建设,济南做网站公司哪家好,如何在网站做404页面,无法创建网站 未能找到web服务器数据挖掘,计算机网络、操作系统刷题笔记54 2022找工作是学历、能力和运气的超强结合体,遇到寒冬,大厂不招人,可能很多算法学生都得去找开发,测开 测开的话,你就得学数据库,sql,orac…

数据挖掘,计算机网络、操作系统刷题笔记54

2022找工作是学历、能力和运气的超强结合体,遇到寒冬,大厂不招人,可能很多算法学生都得去找开发,测开
测开的话,你就得学数据库,sql,oracle,尤其sql要学,当然,像很多金融企业、安全机构啥的,他们必须要用oracle数据库
这oracle比sql安全,强大多了,所以你需要学习,最重要的,你要是考网络警察公务员,这玩意你不会就别去报名了,耽误时间!
考网警特招必然要考操作系统,计算机网络,由于备考时间不长,你可能需要速成,我就想办法自学速成了,课程太长没法玩
刷题系列文章
【1】Oracle数据库:刷题错题本,数据库的各种概念
【2】操作系统,计算机网络,数据库刷题笔记2
【3】数据库、计算机网络,操作系统刷题笔记3
【4】数据库、计算机网络,操作系统刷题笔记4
【5】数据库、计算机网络,操作系统刷题笔记5
【6】数据库、计算机网络,操作系统刷题笔记6
【7】数据库、计算机网络,操作系统刷题笔记7
【8】数据库、计算机网络,操作系统刷题笔记8
【9】操作系统,计算机网络,数据库刷题笔记9
【10】操作系统,计算机网络,数据库刷题笔记10
【11】操作系统,计算机网络,数据库刷题笔记11
【12】操作系统,计算机网络,数据库刷题笔记12
【13】操作系统,计算机网络,数据库刷题笔记13
【14】操作系统,计算机网络,数据库刷题笔记14
【15】计算机网络、操作系统刷题笔记15
【16】数据库,计算机网络、操作系统刷题笔记16
【17】数据库,计算机网络、操作系统刷题笔记17
【18】数据库,计算机网络、操作系统刷题笔记18
【19】数据库,计算机网络、操作系统刷题笔记19
【20】数据库,计算机网络、操作系统刷题笔记20
【21】数据库,计算机网络、操作系统刷题笔记21
【22】数据库,计算机网络、操作系统刷题笔记22
【23】数据库,计算机网络、操作系统刷题笔记23
【24】数据库,计算机网络、操作系统刷题笔记24
【25】数据库,计算机网络、操作系统刷题笔记25
【26】数据库,计算机网络、操作系统刷题笔记26
【27】数据库,计算机网络、操作系统刷题笔记27
【28】数据库,计算机网络、操作系统刷题笔记28
【29】数据库,计算机网络、操作系统刷题笔记29
【30】数据库,计算机网络、操作系统刷题笔记30
【31】数据库,计算机网络、操作系统刷题笔记31
【32】数据库,计算机网络、操作系统刷题笔记32
【33】数据库,计算机网络、操作系统刷题笔记33
【34】数据库,计算机网络、操作系统刷题笔记34
【35】数据挖掘,计算机网络、操作系统刷题笔记35
【36】数据挖掘,计算机网络、操作系统刷题笔记36
【37】数据挖掘,计算机网络、操作系统刷题笔记37
【38】数据挖掘,计算机网络、操作系统刷题笔记38
【39】数据挖掘,计算机网络、操作系统刷题笔记39
【40】数据挖掘,计算机网络、操作系统刷题笔记40
【41】数据挖掘,计算机网络、操作系统刷题笔记41
【42】数据挖掘,计算机网络、操作系统刷题笔记42
【43】数据挖掘,计算机网络、操作系统刷题笔记43
【44】数据挖掘,计算机网络、操作系统刷题笔记44
【45】数据挖掘,计算机网络、操作系统刷题笔记45
【46】数据挖掘,计算机网络、操作系统刷题笔记46
【47】数据挖掘,计算机网络、操作系统刷题笔记47
【48】数据挖掘,计算机网络、操作系统刷题笔记48
【49】数据挖掘,计算机网络、操作系统刷题笔记49
【50】数据挖掘,计算机网络、操作系统刷题笔记50
【51】数据挖掘,计算机网络、操作系统刷题笔记51
【52】数据挖掘,计算机网络、操作系统刷题笔记52
【53】数据挖掘,计算机网络、操作系统刷题笔记53


文章目录

  • 数据挖掘,计算机网络、操作系统刷题笔记54
    • @[TOC](文章目录)
  • 数据挖掘分析应用:关联规则
  • 半监督学习
  • 本章小结
  • 下列网络设备中,能够抑制网络风暴的是()
  • TCP协议与UDP协议负责端到端连接,下列那些信息只出现在TCP报文,UDP报文不包含此信息( )
  • 选择排队作业中等待时间最长的作业优先调度,该调度算法是()。
  • 下列有关进程的说法中,错误的是
  • 为了对文件系统中的文件进行安全管理,任何一个用户在进入系统时都必须进行注册,这一级管理是() 安全管理。
  • 引起创建进程的事件:
  • 总结

数据挖掘分析应用:关联规则

在这里插入图片描述
反应一个事物与其他事物之间的相互依存的关系
在这里插入图片描述
超市里面的技巧都这样

小瓶装放在门口
蔬菜肉类放在最深处
在这里插入图片描述
很多人的项集
算支持度,超过阈值,他们的项集合起来就是频繁集
在这里插入图片描述
算概率
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
只看尿布
啤酒是对尿布有提升作用
在这里插入图片描述
这俩是相斥的

半监督学习

在这里插入图片描述
生成模型:联合分布

分批标注打标签
判别式模型:标签传播算法

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
去算rbf和中心点的距离
附近k个有标注的数据,标注多的,赋值

在这里插入图片描述
在这里插入图片描述
引入包
看代码

import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasetsiris = datasets.load_iris()
print(iris)def f1():passif __name__ == '__main__':f1(){'data': array([[5.1, 3.5, 1.4, 0.2],[4.9, 3. , 1.4, 0.2],[4.7, 3.2, 1.3, 0.2],[4.6, 3.1, 1.5, 0.2],[5. , 3.6, 1.4, 0.2],[5.4, 3.9, 1.7, 0.4],[4.6, 3.4, 1.4, 0.3],[5. , 3.4, 1.5, 0.2],[4.4, 2.9, 1.4, 0.2],[4.9, 3.1, 1.5, 0.1],[5.4, 3.7, 1.5, 0.2],[4.8, 3.4, 1.6, 0.2],[4.8, 3. , 1.4, 0.1],[4.3, 3. , 1.1, 0.1],[5.8, 4. , 1.2, 0.2],[5.7, 4.4, 1.5, 0.4],[5.4, 3.9, 1.3, 0.4],[5.1, 3.5, 1.4, 0.3],[5.7, 3.8, 1.7, 0.3],[5.1, 3.8, 1.5, 0.3],[5.4, 3.4, 1.7, 0.2],[5.1, 3.7, 1.5, 0.4],[4.6, 3.6, 1. , 0.2],[5.1, 3.3, 1.7, 0.5],[4.8, 3.4, 1.9, 0.2],[5. , 3. , 1.6, 0.2],[5. , 3.4, 1.6, 0.4],[5.2, 3.5, 1.5, 0.2],[5.2, 3.4, 1.4, 0.2],[4.7, 3.2, 1.6, 0.2],[4.8, 3.1, 1.6, 0.2],[5.4, 3.4, 1.5, 0.4],[5.2, 4.1, 1.5, 0.1],[5.5, 4.2, 1.4, 0.2],[4.9, 3.1, 1.5, 0.2],[5. , 3.2, 1.2, 0.2],[5.5, 3.5, 1.3, 0.2],[4.9, 3.6, 1.4, 0.1],[4.4, 3. , 1.3, 0.2],[5.1, 3.4, 1.5, 0.2],[5. , 3.5, 1.3, 0.3],[4.5, 2.3, 1.3, 0.3],[4.4, 3.2, 1.3, 0.2],[5. , 3.5, 1.6, 0.6],[5.1, 3.8, 1.9, 0.4],[4.8, 3. , 1.4, 0.3],[5.1, 3.8, 1.6, 0.2],[4.6, 3.2, 1.4, 0.2],[5.3, 3.7, 1.5, 0.2],[5. , 3.3, 1.4, 0.2],[7. , 3.2, 4.7, 1.4],[6.4, 3.2, 4.5, 1.5],[6.9, 3.1, 4.9, 1.5],[5.5, 2.3, 4. , 1.3],[6.5, 2.8, 4.6, 1.5],[5.7, 2.8, 4.5, 1.3],[6.3, 3.3, 4.7, 1.6],[4.9, 2.4, 3.3, 1. ],[6.6, 2.9, 4.6, 1.3],[5.2, 2.7, 3.9, 1.4],[5. , 2. , 3.5, 1. ],[5.9, 3. , 4.2, 1.5],[6. , 2.2, 4. , 1. ],[6.1, 2.9, 4.7, 1.4],[5.6, 2.9, 3.6, 1.3],[6.7, 3.1, 4.4, 1.4],[5.6, 3. , 4.5, 1.5],[5.8, 2.7, 4.1, 1. ],[6.2, 2.2, 4.5, 1.5],[5.6, 2.5, 3.9, 1.1],[5.9, 3.2, 4.8, 1.8],[6.1, 2.8, 4. , 1.3],[6.3, 2.5, 4.9, 1.5],[6.1, 2.8, 4.7, 1.2],[6.4, 2.9, 4.3, 1.3],[6.6, 3. , 4.4, 1.4],[6.8, 2.8, 4.8, 1.4],[6.7, 3. , 5. , 1.7],[6. , 2.9, 4.5, 1.5],[5.7, 2.6, 3.5, 1. ],[5.5, 2.4, 3.8, 1.1],[5.5, 2.4, 3.7, 1. ],[5.8, 2.7, 3.9, 1.2],[6. , 2.7, 5.1, 1.6],[5.4, 3. , 4.5, 1.5],[6. , 3.4, 4.5, 1.6],[6.7, 3.1, 4.7, 1.5],[6.3, 2.3, 4.4, 1.3],[5.6, 3. , 4.1, 1.3],[5.5, 2.5, 4. , 1.3],[5.5, 2.6, 4.4, 1.2],[6.1, 3. , 4.6, 1.4],[5.8, 2.6, 4. , 1.2],[5. , 2.3, 3.3, 1. ],[5.6, 2.7, 4.2, 1.3],[5.7, 3. , 4.2, 1.2],[5.7, 2.9, 4.2, 1.3],[6.2, 2.9, 4.3, 1.3],[5.1, 2.5, 3. , 1.1],[5.7, 2.8, 4.1, 1.3],[6.3, 3.3, 6. , 2.5],[5.8, 2.7, 5.1, 1.9],[7.1, 3. , 5.9, 2.1],[6.3, 2.9, 5.6, 1.8],[6.5, 3. , 5.8, 2.2],[7.6, 3. , 6.6, 2.1],[4.9, 2.5, 4.5, 1.7],[7.3, 2.9, 6.3, 1.8],[6.7, 2.5, 5.8, 1.8],[7.2, 3.6, 6.1, 2.5],[6.5, 3.2, 5.1, 2. ],[6.4, 2.7, 5.3, 1.9],[6.8, 3. , 5.5, 2.1],[5.7, 2.5, 5. , 2. ],[5.8, 2.8, 5.1, 2.4],[6.4, 3.2, 5.3, 2.3],[6.5, 3. , 5.5, 1.8],[7.7, 3.8, 6.7, 2.2],[7.7, 2.6, 6.9, 2.3],[6. , 2.2, 5. , 1.5],[6.9, 3.2, 5.7, 2.3],[5.6, 2.8, 4.9, 2. ],[7.7, 2.8, 6.7, 2. ],[6.3, 2.7, 4.9, 1.8],[6.7, 3.3, 5.7, 2.1],[7.2, 3.2, 6. , 1.8],[6.2, 2.8, 4.8, 1.8],[6.1, 3. , 4.9, 1.8],[6.4, 2.8, 5.6, 2.1],[7.2, 3. , 5.8, 1.6],[7.4, 2.8, 6.1, 1.9],[7.9, 3.8, 6.4, 2. ],[6.4, 2.8, 5.6, 2.2],[6.3, 2.8, 5.1, 1.5],[6.1, 2.6, 5.6, 1.4],[7.7, 3. , 6.1, 2.3],[6.3, 3.4, 5.6, 2.4],[6.4, 3.1, 5.5, 1.8],[6. , 3. , 4.8, 1.8],[6.9, 3.1, 5.4, 2.1],[6.7, 3.1, 5.6, 2.4],[6.9, 3.1, 5.1, 2.3],[5.8, 2.7, 5.1, 1.9],[6.8, 3.2, 5.9, 2.3],[6.7, 3.3, 5.7, 2.5],[6.7, 3. , 5.2, 2.3],[6.3, 2.5, 5. , 1.9],[6.5, 3. , 5.2, 2. ],[6.2, 3.4, 5.4, 2.3],[5.9, 3. , 5.1, 1.8]]), 'target': array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]), 'frame': None, 'target_names': array(['setosa', 'versicolor', 'virginica'], dtype='<U10'), 'DESCR': '.. _iris_dataset:\n\nIris plants dataset\n--------------------\n\n**Data Set Characteristics:**\n\n    :Number of Instances: 150 (50 in each of three classes)\n    :Number of Attributes: 4 numeric, predictive attributes and the class\n    :Attribute Information:\n        - sepal length in cm\n        - sepal width in cm\n        - petal length in cm\n        - petal width in cm\n        - class:\n                - Iris-Setosa\n                - Iris-Versicolour\n                - Iris-Virginica\n                \n    :Summary Statistics:\n\n    ============== ==== ==== ======= ===== ====================\n                    Min  Max   Mean    SD   Class Correlation\n    ============== ==== ==== ======= ===== ====================\n    sepal length:   4.3  7.9   5.84   0.83    0.7826\n    sepal width:    2.0  4.4   3.05   0.43   -0.4194\n    petal length:   1.0  6.9   3.76   1.76    0.9490  (high!)\n    petal width:    0.1  2.5   1.20   0.76    0.9565  (high!)\n    ============== ==== ==== ======= ===== ====================\n\n    :Missing Attribute Values: None\n    :Class Distribution: 33.3% for each of 3 classes.\n    :Creator: R.A. Fisher\n    :Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)\n    :Date: July, 1988\n\nThe famous Iris database, first used by Sir R.A. Fisher. The dataset is taken\nfrom Fisher\'s paper. Note that it\'s the same as in R, but not as in the UCI\nMachine Learning Repository, which has two wrong data points.\n\nThis is perhaps the best known database to be found in the\npattern recognition literature.  Fisher\'s paper is a classic in the field and\nis referenced frequently to this day.  (See Duda & Hart, for example.)  The\ndata set contains 3 classes of 50 instances each, where each class refers to a\ntype of iris plant.  One class is linearly separable from the other 2; the\nlatter are NOT linearly separable from each other.\n\n.. topic:: References\n\n   - Fisher, R.A. "The use of multiple measurements in taxonomic problems"\n     Annual Eugenics, 7, Part II, 179-188 (1936); also in "Contributions to\n     Mathematical Statistics" (John Wiley, NY, 1950).\n   - Duda, R.O., & Hart, P.E. (1973) Pattern Classification and Scene Analysis.\n     (Q327.D83) John Wiley & Sons.  ISBN 0-471-22361-1.  See page 218.\n   - Dasarathy, B.V. (1980) "Nosing Around the Neighborhood: A New System\n     Structure and Classification Rule for Recognition in Partially Exposed\n     Environments".  IEEE Transactions on Pattern Analysis and Machine\n     Intelligence, Vol. PAMI-2, No. 1, 67-71.\n   - Gates, G.W. (1972) "The Reduced Nearest Neighbor Rule".  IEEE Transactions\n     on Information Theory, May 1972, 431-433.\n   - See also: 1988 MLC Proceedings, 54-64.  Cheeseman et al"s AUTOCLASS II\n     conceptual clustering system finds 3 classes in the data.\n   - Many, many more ...', 'feature_names': ['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)'], 'filename': 'C:\\ProgramData\\Anaconda3\\envs\\AES\\lib\\site-packages\\sklearn\\datasets\\data\\iris.csv'}Process finished with exit code 0

data有四个属性
target是标注类别,012三种


import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasetsiris = datasets.load_iris()
# print(iris)
labels = np.copy(iris.target)  # 复制一份标签def f1():print(len(labels))  # 150条unlabeled_points = np.random.rand(len(iris.target))  # 0-1的随机数unlabeled_points = unlabeled_points < 0.3  # 返回1和0的数labels[unlabeled_points] = -1  # 重置随机位置的标签,下标随机是1的那部分统统搞为-1print(iris.target)print(labels)if __name__ == '__main__':f1()150
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 22 2]
[ 0  0  0 -1 -1  0  0  0 -1 -1 -1 -1  0  0  0 -1 -1  0  0  0  0 -1  0 -10 -1  0  0  0  0  0 -1  0 -1  0 -1  0  0  0  0  0 -1  0  0  0 -1 -1  00 -1 -1 -1  1  1  1  1  1  1 -1 -1 -1 -1  1  1  1  1 -1 -1  1 -1  1 -1-1 -1  1  1  1  1 -1  1  1  1  1 -1 -1 -1 -1 -1 -1  1 -1 -1 -1 -1  1  11  1  1 -1  2  2  2  2  2  2  2  2  2 -1  2  2  2 -1  2  2 -1  2 -1  22  2  2  2  2 -1  2  2 -1  2  2 -1 -1  2  2  2  2  2  2  2  2  2 -1 -1-1  2  2  2  2 -1]Process finished with exit code 0

标签是-1的就是没有标签,懂?

这样就把半监督数据集搞出来了哦

import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasetsiris = datasets.load_iris()
# print(iris)
labels = np.copy(iris.target)  # 复制一份标签def f1():print(len(labels))  # 150条unlabeled_points = np.random.rand(len(iris.target))  # 0-1的随机数unlabeled_points = unlabeled_points < 0.3  # 返回1和0的数labels[unlabeled_points] = -1  # 重置随机位置的标签,下标随机是1的那部分统统搞为-1# print(iris.target)# print(labels)Y = labels[unlabeled_points]  # 看看哪些是-1print(Y)print("无标注个数", list(labels).count(-1))if __name__ == '__main__':f1()150
[-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1]
无标注个数 38Process finished with exit code 0

在这里插入图片描述
在这里插入图片描述

import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasetsiris = datasets.load_iris()
# print(iris)
labels = np.copy(iris.target)  # 复制一份标签def f1():print(len(labels))  # 150条unlabeled_points = np.random.rand(len(iris.target))  # 0-1的随机数unlabeled_points = unlabeled_points < 0.3  # 返回1和0的数Y = labels[unlabeled_points]  # 看看哪些是-1print(Y)labels[unlabeled_points] = -1  # 重置随机位置的标签,下标随机是1的那部分统统搞为-1# print(iris.target)# print(labels)# print("无标注个数", list(labels).count(-1))# 然后建立半监督数据模型from sklearn.semi_supervised import LabelPropagationmodel = LabelPropagation()model.fit(iris.data, labels)  # fity_pred = model.predict(iris.data)print(y_pred)y_pred = y_pred[unlabeled_points]  # 看看哪些是-1print(y_pred)from sklearn.metrics import accuracy_score, recall_score, f1_scoreprint("acc:", accuracy_score(Y, y_pred))print("recall_score:", recall_score(Y, y_pred, average="micro"))print("f1_score:", f1_score(Y, y_pred, average="micro"))if __name__ == '__main__':f1()150
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 22 2 2 2 2 2 2 2 2 2]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 22 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 22 2]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 12 1 2 2 2 2 2 2 2 2]
acc: 0.9574468085106383
recall_score: 0.9574468085106383
f1_score: 0.9574468085106385Process finished with exit code 0

反正通过有监督的数据,将这些无标注的数据打上标签,搞定

本章小结

在这里插入图片描述
在这里插入图片描述
sklearn的机器学习分类
不见得人工神经网络能干一切事情

下列网络设备中,能够抑制网络风暴的是()

在这里插入图片描述

TCP协议与UDP协议负责端到端连接,下列那些信息只出现在TCP报文,UDP报文不包含此信息( )

在这里插入图片描述

选择排队作业中等待时间最长的作业优先调度,该调度算法是()。

在这里插入图片描述

下列有关进程的说法中,错误的是

在这里插入图片描述

为了对文件系统中的文件进行安全管理,任何一个用户在进入系统时都必须进行注册,这一级管理是() 安全管理。

在这里插入图片描述

引起创建进程的事件:

1、用户登录
2、作业调度
3、提供服务(用户程序提出请求)
4、应用请求(基于应用进程的需求)

在这里插入图片描述


总结

提示:重要经验:

1)
2)学好oracle,操作系统,计算机网络,即使经济寒冬,整个测开offer绝对不是问题!同时也是你考公网络警察的必经之路。
3)笔试求AC,可以不考虑空间复杂度,但是面试既要考虑时间复杂度最优,也要考虑空间复杂度最优。

http://www.zhongyajixie.com/news/49187.html

相关文章:

  • 网站改版 方案福州百度推广开户
  • 上海网站营销公司长春疫情最新消息
  • 南通市区有哪几家做网站的软文推广文章范文
  • 做网站设计挣钱吗长沙有实力seo优化公司
  • wordpress图片设置水印2019嘉兴百度seo
  • 在线文库网站建设电子商务网店运营推广
  • 苏州集团网站设计开发网络营销策略内容
  • 网站很久没被收录的新闻怎么处理运营推广渠道有哪些
  • 中太建设集团网站查看网站流量的工具
  • wordpress标签云插件东莞seo建站优化工具
  • 视频网站开发代码新网站推广方法
  • 在哪个网站做一件代发靠谱吗网站优化哪家好
  • 武安市精品网站开发给公司做网站的公司
  • qifeiye做的网站如何企业网站seo公司
  • wordpress类似的博客太原seo排名公司
  • 自己做考试题目网站优秀的网络搜索引擎营销案例
  • 一起做陶瓷的网站北京seo排名服务
  • 网站建设需要提供哪些资料seo排名优化教学
  • 电商设计个人作品集制作什么是seo教程
  • 色情姐姐做床戏网站最新消息
  • 青岛网站建设eoe网络渠道有哪些
  • 电商个人网站建设商品推广软文800字
  • 河南网站建设设计价格简述网站推广的意义和方法
  • 网站设计方案策划什么文案容易上热门
  • wordpress变装网seo黑帽技术有哪些
  • 能先做网站再绑定域名吗搜一搜站长工具
  • 网站建设维护合同模板微博推广价格表
  • 如何只做网站app开发网站
  • 怎么选择邯郸做网站查关键词热度的网站
  • 献县城市住房建设局网站上海网站制作公司