当前位置: 首页 > news >正文

网站定制网页设计品牌网络推广

网站定制网页设计,品牌网络推广,php网站建设论文,做ic用什么网站分类目录:《自然语言处理从入门到应用》总目录 本文将介绍如何在LangChain中使用Embedding类。Embedding类是一种与嵌入交互的类。有很多嵌入提供商,如:OpenAI、Cohere、Hugging Face等,这个类旨在为所有这些提供一个标准接口。 …

分类目录:《自然语言处理从入门到应用》总目录


本文将介绍如何在LangChain中使用Embedding类。Embedding类是一种与嵌入交互的类。有很多嵌入提供商,如:OpenAI、Cohere、Hugging Face等,这个类旨在为所有这些提供一个标准接口。

嵌入创建文本的向量表示会很有用,因为这意味着我们可以在向量空间中表示文本,并执行类似语义搜索这样的操作。LangChain中的基本Embedding类公开两种方法:

  • embed_documents:适用于多个文档
  • embed_query:适用于单个文档

将这两种方法作为两种不同的方法的另一个原因是一些嵌入提供商对于需要搜索的文档和查询(搜索查询本身)具有不同的嵌入方法,下面是文本嵌入的集成示例:

Aleph Alpha

使用Aleph Alpha的语义嵌入有两种可能的方法。如果我们有不同结构的文本(例如文档和查询),则我们使用非对称嵌入。相反,对于具有可比结构的文本,则建议使用对称嵌入的方法:

非对称
from langchain.embeddings import AlephAlphaAsymmetricSemanticEmbedding
document = "This is a content of the document"
query = "What is the content of the document?"
embeddings = AlephAlphaAsymmetricSemanticEmbedding()
doc_result = embeddings.embed_documents([document])
query_result = embeddings.embed_query(query)
对称
from langchain.embeddings import AlephAlphaSymmetricSemanticEmbedding
text = "This is a test text"
embeddings = AlephAlphaSymmetricSemanticEmbedding()
doc_result = embeddings.embed_documents([text])
query_result = embeddings.embed_query(text)

Amazon Bedrock

Amazon Bedrock是一个完全托管的服务,通过API提供了来自领先AI初创公司和亚马逊的FMs,因此您可以从广泛的FMs中选择最适合您的用例的模型。

%pip install boto3
from langchain.embeddings import BedrockEmbeddingsembeddings = BedrockEmbeddings(credentials_profile_name="bedrock-admin")
embeddings.embed_query("This is a content of the document")
embeddings.embed_documents(["This is a content of the document"])

Azure OpenAI

我们加载OpenAI Embedding类,并设置环境变量以指示使用Azure端点。

# 设置用于 OpenAI 包的环境变量,以指示使用 Azure 端点
import osos.environ["OPENAI_API_TYPE"] = "azure"
os.environ["OPENAI_API_BASE"] = "https://<your-endpoint.openai.azure.com/"
os.environ["OPENAI_API_KEY"] = "your AzureOpenAI key"
os.environ["OPENAI_API_VERSION"] = "2023-03-15-preview"
from langchain.embeddings import OpenAIEmbeddingsembeddings = OpenAIEmbeddings(deployment="your-embeddings-deployment-name")
text = "This is a test document."
query_result = embeddings.embed_query(text)
doc_result = embeddings.embed_documents([text])

Cohere

我们加载Cohere Embedding类:

from langchain.embeddings import CohereEmbeddings
embeddings = CohereEmbeddings(cohere_api_key=cohere_api_key)
text = "This is a test document."
query_result = embeddings.embed_query(text)
doc_result = embeddings.embed_documents([text])

DashScope

我们加载DashScope嵌入类:

from langchain.embeddings import DashScopeEmbeddings
embeddings = DashScopeEmbeddings(model='text-embedding-v1', dashscope_api_key='your-dashscope-api-key')
text = "This is a test document."
query_result = embeddings.embed_query(text)
print(query_result)
doc_results = embeddings.embed_documents(["foo"])
print(doc_results)

DashScope

我们加载DashScope嵌入类:

from langchain.embeddings import DashScopeEmbeddings
embeddings = DashScopeEmbeddings(model='text-embedding-v1', dashscope_api_key='your-dashscope-api-key')
text = "This is a test document."
query_result = embeddings.embed_query(text)
print(query_result)
doc_results = embeddings.embed_documents(["foo"])
print(doc_results)

Elasticsearch

使用Elasticsearch中托管的嵌入模型生成嵌入的操作步骤。通过下面的方式,可以很容易地实例化ElasticsearchEmbeddings类。如果我们使用的是Elastic Cloud,则可以使用from_credentials构造函数,如果我们使用的是Elasticsearch集群,则可以使用from_es_connection构造函数:

!pip -q install elasticsearch langchain
import elasticsearch
from langchain.embeddings.elasticsearch import ElasticsearchEmbeddings
# 定义模型 ID
model_id = 'your_model_id'

如果我们希望使用from_credentials进行测试,那么我们需要Elastic Cloud的cloud_id:

# 使用凭据实例化 ElasticsearchEmbeddings
embeddings = ElasticsearchEmbeddings.from_credentials(model_id,es_cloud_id='your_cloud_id', es_user='your_user', es_password='your_password'
)# 为多个文档创建嵌入
documents = ['This is an example document.', 'Another example document to generate embeddings for.'
]
document_embeddings = embeddings.embed_documents(documents)# 打印文档嵌入
for i, embedding in enumerate(document_embeddings):print(f"文档 {i+1} 的嵌入:{embedding}")# 为单个查询创建嵌入
query = 'This is a single query.'
query_embedding = embeddings.embed_query(query)# 打印查询嵌入
print(f"查询的嵌入:{query_embedding}")

同时,我们可以使用现有的Elasticsearch客户端连接进行测试,这可用于任何Elasticsearch部署:

# 创建 Elasticsearch 连接
es_connection = Elasticsearch(hosts=['https://es_cluster_url:port'], basic_auth=('user', 'password')
)
# 使用 es_connection 实例化 ElasticsearchEmbeddings
embeddings = ElasticsearchEmbeddings.from_es_connection(model_id,es_connection,
)
# 为多个文档创建嵌入
documents = ['This is an example document.', 'Another example document to generate embeddings for.'
]
document_embeddings = embeddings.embed_documents(documents)# 打印文档嵌入
for i, embedding in enumerate(document_embeddings):print(f"文档 {i+1} 的嵌入:{embedding}")# 为单个查询创建嵌入
query = 'This is a single query.'
query_embedding = embeddings.embed_query(query)# 打印查询嵌入
print(f"查询的嵌入:{query_embedding}")

参考文献:
[1] LangChain 🦜️🔗 中文网,跟着LangChain一起学LLM/GPT开发:https://www.langchain.com.cn/
[2] LangChain中文网 - LangChain 是一个用于开发由语言模型驱动的应用程序的框架:http://www.cnlangchain.com/

http://www.zhongyajixie.com/news/48146.html

相关文章:

  • 适合国外网站的dns谷歌浏览器app下载
  • 武汉制作网站网络营销论文
  • 四川西充县建设局网站关键词营销优化
  • 王烨名字怎么样南宁正规的seo费用
  • 做分销的官网网站优化建议
  • 邢台建设企业网站代写软文公司
  • 网站做的图上传后字变得很模糊营销型网站建设托管
  • 珠海建设网站公司哪家好友点企业网站管理系统
  • 潍坊建网站短视频seo排名
  • 好看的单页面网站模板成都网络推广中联无限
  • 可靠的网站建设流程免费html网页模板
  • ps做网站效果图尺寸如何苹果要做搜索引擎
  • 重庆做网站公司电话seo教程网
  • 长春做网站wang时事政治2023最新热点事件
  • wordpress静态页生成seo网站关键词优化排名
  • 如何做网站进行推广临沂做网站的公司
  • 网站色彩心理暴疯团队seo课程
  • 做公益活动的网站如何进行网络推广
  • 网站建设与栏目设置免费seo课程
  • 营销网站功能关于校园推广的软文
  • 哪里有做网站东莞做一个企业网站
  • 网站开发实例视频百度大数据平台
  • 医疗美容网站建设外贸营销型网站设计
  • 有网站做淘宝客外贸建站网站推广
  • 太仓智能网站开发广州网站营销推广
  • asp.net网站配置文件石家庄seo
  • 做网站时背景图片浮动百度搜索竞价
  • 做设计必须知道的几个网站seo搜索排名优化方法
  • 昌平网站建设怎么才能建立一个网站卖东西
  • 开源网站建设实习心得国内推广平台有哪些