当前位置: 首页 > news >正文

建设包包网站的目的邯郸网站seo

建设包包网站的目的,邯郸网站seo,株洲网站建设工作室,搭建一个网站的基本流程本篇主要介绍几种其他较常用的模型解释性方法。 1. Permutation Feature Importance(PFI) 1.1 算法原理 置换特征重要性(Permutation Feature Importance)的概念很简单,其衡量特征重要性的方法如下:计算特征改变后模型预测误差的增加。如果打乱该特征的…

  本篇主要介绍几种其他较常用的模型解释性方法。

1. Permutation Feature Importance(PFI)

1.1 算法原理

  置换特征重要性(Permutation Feature Importance)的概念很简单,其衡量特征重要性的方法如下:计算特征改变后模型预测误差的增加。如果打乱该特征的值增加了模型的误差,那么一个特征就是重要的;如果打乱之后模型误差不变,那就认为该特征不重要。

1.2 Python实现

  使用Wine酒数据来训练模型。其模型训练代码如下:

import pandas as pd
import numpy as np
from sklearn.datasets import load_wine
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score
from matplotlib import pyplot as plt
import seaborn as snswine=load_wine()
X=pd.DataFrame(wine.data,columns=wine.feature_names)
y=wine.targetrfc=RandomForestClassifier(max_depth=4,random_state=0)
rfc.fit(X,y)
y_pred=rfc.predict(X)accuracy=accuracy_score(y,y_pred)
1.2.1 sklearn包实现

 &ems;常用的机器学习包sklearn中也集成了这种方法,但是需要单独写代码来实现可视化。其具体代码如下:

from sklearn.inspection import permutation_importance
result=permutation_importance(rfc,X,y,n_repeats=10,random_state=42)feat=pd.DataFrame(np.hstack(([[col] for col in wine.feature_names],[[item] for item in result['importances_mean']])),columns=['Feat','Imp'])
feat['Imp']=feat['Imp'].astype(float)
feat=feat.sort_values('Imp',ascending=False)
sns.barplot(x='Imp',y='Feat',data=feat)
plt.show()

其结果如下:
在这里插入图片描述

1.2.2 eli5包实现
import eli5
from eli5.sklearn import PermutationImportance
perm=PermutationImportance(rfc,n_iter=10)
perm.fit(X,y)
eli5.show_weights(perm,feature_names=wine.feature_names)

其结果如下:
在这里插入图片描述

1.3 参考资料

  • https://blog.csdn.net/weixin_39653948/article/details/110731460
  • https://blog.csdn.net/qq_41185868/article/details/126046956

2 Partial Dependency Plots(部分依赖图,PDP)

2.1 算法原理

  部分依赖图(PDP)展示了一个或两个特征对机器学习模型预测结果的边际效应。部分依赖图可以显示目标和特征之间的关系是线性的、单调的还是更复杂的关系。PDP假设所有特征两两不相关。其具体步骤如下:

  • 训练一个机器学习模型(假设特征依次为F1…Fn,yF_{1} \dots F_{n},yF1Fn,y为目标变量);
  • 假设需要探究特征F1F_{1}F1对目标变量yyy的边际效应;
  • 特征F1F_{1}F1的取值依次为(a1,a2,…,an)(a_{1},a_{2},\dots,a_{n})(a1,a2,,an); 依次用a1,a2,…,ana_{1},a_{2},\dots,a_{n}a1,a2,,an代替F1F_{1}F1列,其他特征保持不变。利用训练好的模型对这些数据进行预测,计算所有样本的预测平均值。
  • 以特征F1F_{1}F1的不同取值为X轴,其对应的预测样本平均值为Y轴进行作图即可。

2.2 Python实现

2.2.1 安装PDPbox包

  使用如下代码直接安装PDPbox包的时候经常报错。报错的原因在于matplotlib V3.1.1无法正确安装。

pip install PDPbox

在网上查了很多资料也没有解决,所以在相关网站:https://pypi.tuna.tsinghua.edu.cn/simple/pdpbox/ 直接下载了pdpbox的压缩包,解压之后将以下两个文件直接放到python安装路径的lib/site-packages文件夹下即可。
在这里插入图片描述

2.2.2 PDPbox实现
  • 单变量的边际效用
from pdpbox import pdppdp_goals=pdp.pdp_isolate(model=rfc,dataset=X,model_features=wine.feature_names,feature=wine.feature_names[0])
pdp.pdp_plot(pdp_goals,wine.feature_names[0])
plt.show()

在这里插入图片描述

  • 交叉特征的边际效用
pdp_goals=pdp.pdp_interact(model=rfc,dataset=X,model_features=wine.feature_names,features=wine.feature_names[3:5])
pdp.pdp_interact_plot(pdp_goals,feature_names=wine.feature_names[3:5])
plt.show()

在这里插入图片描述

2.2.3 sklearn实现

  除了使用专用的PDPbox箱之外,还可以使用sklearn包来实现部分依赖图。具体使用方法如下:

from sklearn.inspection import plot_partial_dependence
plot_partial_dependence(rfc,X,features=wine.feature_names[0:1],feature_names=wine.feature_names,target=0)
plt.show()plot_partial_dependence(rfc,X,features=wine.feature_names[3:5],feature_names=wine.feature_names,target=0)
plt.show()

其结果如下(这里仅显示第二组结果):
在这里插入图片描述

3 Individual Conditional Expectation(ICE)

3.1 算法原理

  个体条件期望计算方法与PDP类似,它刻画的是每个个体的预测值与单一变量之间的关系,消除了非均匀效应的影响。

3.2 参考资料

  • https://blog.csdn.net/sinat_26917383/article/details/115669705
http://www.zhongyajixie.com/news/47055.html

相关文章:

  • 17网站一起做网店图片工具开发一个app价目表
  • 子网站建设工作谷歌代运营
  • 租房网站模板企点客服
  • 下载安装注册app宁波seo外包服务商
  • 企业站seo哪家好seo博客网址
  • 如何做一位网站销售客服论文收录网站
  • 旅游网站模板html广告大全
  • 哪些网站可以做迁徙图sem是什么方法
  • 品牌学习网站立即优化在哪里
  • 网站自动弹窗代码电脑培训班零基础
  • 如何转移网站怎么建一个自己的网站
  • 公司网站开发 flask优化设计电子课本下载
  • 包头北京网站建设seowhy官网
  • wordpress的字体颜色如何更改seo优化咨询
  • 东莞市国外网站建设多少钱网站优化推广的方法
  • 如何建手机网站线上宣传方案
  • 微信h5作品欣赏济南网站优化排名
  • 购买高仿手表网站seo 公司
  • 一呼百应网做的网站广告联盟app推广
  • 定制网站哪家好广告营销
  • 域名和网站名要一样吗重庆关键词搜索排名
  • h5创建网站厦门百度代理公司
  • 重庆渝中区企业网站建设哪家好网络广告的收费模式有哪些
  • 好的广告片拍摄制作公司杭州网站推广与优化
  • 网站做宣传青岛关键词搜索排名
  • 推荐一些可以做笔试题的网站有哪些营销推广方式
  • 佳木斯 两学一做 网站优化网络
  • 专业建设网站哪家好seo就业指导
  • wordpress无显示评论框杭州云优化信息技术有限公司
  • 郑州做品牌网站好的公司天津seo代理商