当前位置: 首页 > news >正文

免费网络空间做seo用哪种建站程序最好

免费网络空间,做seo用哪种建站程序最好,网站备案需先做网站吗,wordpress迷在pytorch的DDP原生代码使用的基础上,ray和accelerate两个库对于pytorch并行训练的代码使用做了更加友好的封装。 以下为极简的代码示例。 ray ray.py #codingutf-8 import os import sys import time import numpy as np import torch from torch import nn im…

在pytorch的DDP原生代码使用的基础上,ray和accelerate两个库对于pytorch并行训练的代码使用做了更加友好的封装。

以下为极简的代码示例。

ray

ray.py

#coding=utf-8
import os
import sys
import time
import numpy as np
import torch
from torch import nn
import torch.utils.data as Data
import ray
from ray.train.torch import TorchTrainer
from ray.air.config import ScalingConfig
import onnxruntime# bellow code use AI model to simulate linear regression, formula is: y = x1 * w1 + x2 * w2 + b
# --- DDP RAY --- # # model structure
class LinearNet(nn.Module):def __init__(self, n_feature):super(LinearNet, self).__init__()self.linear = nn.Linear(n_feature, 1)def forward(self, x):y = self.linear(x)return y# whole train task
def train_task():print("--- train_task, pid: ", os.getpid())# device settingdevice = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")print("device:", device)device_ids = torch._utils._get_all_device_indices()print("device_ids:", device_ids)if len(device_ids) <= 0:print("invalid device_ids, exit")return# prepare datanum_inputs = 2num_examples = 1000true_w = [2, -3.5]true_b = 3.7features = torch.tensor(np.random.normal(0, 1, (num_examples, num_inputs)), dtype=torch.float)labels = true_w[0] * features[:, 0] + true_w[1] * features[:, 1] + true_b + torch.tensor(np.random.normal(0, 0.01, size=num_examples), dtype=torch.float)# load databatch_size = 10dataset = Data.TensorDataset(features, labels)data_iter = Data.DataLoader(dataset, batch_size, shuffle=True)for X, y in data_iter:print(X, y)breakdata_iter = ray.train.torch.prepare_data_loader(data_iter)# model define and initmodel = LinearNet(num_inputs)ddp_model = ray.train.torch.prepare_model(model)print(ddp_model)# cost functionloss = nn.MSELoss()# optimizeroptimizer = torch.optim.SGD(ddp_model.parameters(), lr=0.03)# trainnum_epochs = 6for epoch in range(1, num_epochs + 1):batch_count = 0sum_loss = 0.0for X, y in data_iter:output = ddp_model(X)l = loss(output, y.view(-1, 1))optimizer.zero_grad()l.backward()optimizer.step()batch_count += 1sum_loss += l.item()print('epoch %d, avg_loss: %f' % (epoch, sum_loss / batch_count))# save modelprint("save model, pid: ", os.getpid())torch.save(ddp_model.module.state_dict(), "ddp_ray_model.pt")def ray_launch_task():num_workers = 2scaling_config = ScalingConfig(num_workers=num_workers, use_gpu=True)trainer = TorchTrainer(train_loop_per_worker=train_task, scaling_config=scaling_config)results = trainer.fit()def predict_task():print("--- predict_task")# prepare datanum_inputs = 2num_examples = 20true_w = [2, -3.5]true_b = 3.7features = torch.tensor(np.random.normal(0, 1, (num_examples, num_inputs)), dtype=torch.float)labels = true_w[0] * features[:, 0] + true_w[1] * features[:, 1] + true_b + torch.tensor(np.random.normal(0, 0.01, size=num_examples), dtype=torch.float)model = LinearNet(num_inputs)model.load_state_dict(torch.load("ddp_ray_model.pt"))model.eval()x, y = features[6], labels[6]pred_y = model(x)print("x:", x)print("y:", y)print("pred_y:", y)if __name__ == "__main__":print("==== task begin ====")print("python version:", sys.version)print("torch version:", torch.__version__)print("model name:", LinearNet.__name__)ray_launch_task()# predict_task()print("==== task end ====")

accelerate

acc.py

#coding=utf-8
import os
import sys
import time
import numpy as np
from accelerate import Accelerator
import torch
from torch import nn
import torch.utils.data as Data
import onnxruntime# bellow code use AI model to simulate linear regression, formula is: y = x1 * w1 + x2 * w2 + b
# --- accelerate --- # # model structure
class LinearNet(nn.Module):def __init__(self, n_feature):super(LinearNet, self).__init__()self.linear = nn.Linear(n_feature, 1)def forward(self, x):y = self.linear(x)return y# whole train task
def train_task():print("--- train_task, pid: ", os.getpid())# device settingdevice = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")print("device:", device)device_ids = torch._utils._get_all_device_indices()print("device_ids:", device_ids)if len(device_ids) <= 0:print("invalid device_ids, exit")return# prepare datanum_inputs = 2num_examples = 1000true_w = [2, -3.5]true_b = 3.7features = torch.tensor(np.random.normal(0, 1, (num_examples, num_inputs)), dtype=torch.float)labels = true_w[0] * features[:, 0] + true_w[1] * features[:, 1] + true_b + torch.tensor(np.random.normal(0, 0.01, size=num_examples), dtype=torch.float)# load databatch_size = 10dataset = Data.TensorDataset(features, labels)data_iter = Data.DataLoader(dataset, batch_size, shuffle=True)for X, y in data_iter:print(X, y)break# model define and initmodel = LinearNet(num_inputs)# cost functionloss = nn.MSELoss()# optimizeroptimizer = torch.optim.SGD(model.parameters(), lr=0.03)accelerator = Accelerator()model, optimizer, data_iter = accelerator.prepare(model, optimizer, data_iter) # automatically move model and data to gpu as config# trainnum_epochs = 3for epoch in range(1, num_epochs + 1):batch_count = 0sum_loss = 0.0for X, y in data_iter:output = model(X)l = loss(output, y.view(-1, 1))optimizer.zero_grad()accelerator.backward(l)optimizer.step()batch_count += 1sum_loss += l.item()print('epoch %d, avg_loss: %f' % (epoch, sum_loss / batch_count))# save modeltorch.save(model, "acc_model.pt")def predict_task():print("--- predict_task")# prepare datanum_inputs = 2num_examples = 20true_w = [2, -3.5]true_b = 3.7features = torch.tensor(np.random.normal(0, 1, (num_examples, num_inputs)), dtype=torch.float)labels = true_w[0] * features[:, 0] + true_w[1] * features[:, 1] + true_b + torch.tensor(np.random.normal(0, 0.01, size=num_examples), dtype=torch.float)model = torch.load("acc_model.pt")model.eval()x, y = features[6], labels[6]pred_y = model(x)print("x:", x)print("y:", y)print("pred_y:", y)if __name__ == "__main__":# launch method: use command line# for example# accelerate launch ACC.py print("python version:", sys.version)print("torch version:", torch.__version__)print("model name:", LinearNet.__name__)train_task()predict_task()print("==== task end ====")
http://www.zhongyajixie.com/news/37194.html

相关文章:

  • 大学两学一做网站谷歌浏览器下载手机版中文
  • 快速做网站哪家好网络软文范例
  • 丝网外贸做哪些网站seo公司怎么样
  • 做响应网站的素材网站亚洲7号卫星电视
  • 台州市知名专业做网站赛雷猴是什么意思
  • 用网站模板建站中国市场营销网
  • 网络规划设计师教程第二版下载焦作seo公司
  • 64mb wordpress朝阳seo
  • 建设旅游网站的好处免费站长统计工具
  • 网站开发 程序开发阶段交换链接
  • 做网站怎么备案线上广告投放方式
  • 南京高端网站制作公司cnzz数据统计
  • 手机网站如何做才能兼容性各种手机网站页面怎么优化
  • 广州网站排名优化开发百度seo培训公司
  • 专业的建网站的公司长沙靠谱seo优化费用
  • 沈阳哪家做网站好web制作网站的模板
  • 做营销网站企业seo诊断a5
  • app自己怎么开发软件优化疫情防控
  • 网站搭建在线支付seo外包公司费用
  • 想自己搞一个视频网站怎么做广告策划书
  • 哪个网站做外单出口好百度扫一扫
  • 江门建设银行网站软文网官网
  • 网站建设的问题分析公司网站如何制作
  • 网站网页链接汽车宣传软文
  • 卡盟网站专用主机电商的推广方式有哪些
  • 网站改版费用推广公司运营模式
  • 东莞网站建设多长时间泉州百度竞价开户
  • 免费外贸网站大全怎么做小说推广挣钱
  • 做的网站在百度找不到黑龙江网络推广好做吗
  • 免费收录网站提交国内搜索引擎优化的公司