当前位置: 首页 > news >正文

做针织衫的网站软文写作服务

做针织衫的网站,软文写作服务,flash xml网站,做企业网站的优势clickhouse 新特性: 从clickhouse 22.3至最新的版本24.3.2.23,clickhouse在快速发展中,每个版本都增加了一些新的特性,在数据写入、查询方面都有性能加速。 本文根据clickhouse blog中的clickhouse release blog中,学…

clickhouse 新特性:

从clickhouse 22.3至最新的版本24.3.2.23,clickhouse在快速发展中,每个版本都增加了一些新的特性,在数据写入、查询方面都有性能加速。
本文根据clickhouse blog中的clickhouse release blog中,学习并梳理了一些在实际工作中可能用到的新特性。

以下是如何基于docker,如果试用这些新性

docker run -d --name=ch -p 8123:8123 -p 9000:9000 -p 9009:9009 --ulimit nofile=262144:262144 -v D:/ch/latest/external:/external:rw -v  chlatest:/var/lib/clickhouse:rw -v D:/ch/latest/logs:/var/log/clickhouse-server:rw -v D:/ch/latest/etc/clickhouse-server:/etc/clickhouse-server:rw clickhouse/clickhouse-server:24.3.2.23docker exec -it bashclickhouse-client --format_csv_delimiter=','

transform函数

进行字典替换

transform(x, array_from, array_to, default)
transform(T, Array(T), Array(U), U) -> U
transform(x, array_from, array_to)

UK-house-price-dataset.csv

CREATE TABLE uk_price_paid
(price UInt32,date Date,postcode1 LowCardinality(String),postcode2 LowCardinality(String),type Enum8('terraced' = 1, 'semi-detached' = 2, 'detached' = 3, 'flat' = 4, 'other' = 0),is_new UInt8,duration Enum8('freehold' = 1, 'leasehold' = 2, 'unknown' = 0),addr1 String,addr2 String,street LowCardinality(String),locality LowCardinality(String),town LowCardinality(String),district LowCardinality(String),county LowCardinality(String)
)
ENGINE = MergeTree
ORDER BY (postcode1, postcode2, addr1, addr2);INSERT INTO uk_price_paid
WITHsplitByChar(' ', postcode) AS p
SELECTtoUInt32(price_string) AS price,parseDateTimeBestEffortUS(time) AS date,p[1] AS postcode1,p[2] AS postcode2,transform(a, ['T', 'S', 'D', 'F', 'O'], ['terraced', 'semi-detached', 'detached', 'flat', 'other']) AS type,b = 'Y' AS is_new,transform(c, ['F', 'L', 'U'], ['freehold', 'leasehold', 'unknown']) AS duration, addr1, addr2, street, locality, town, district, county
FROM file('UK-house-price-dataset.csv','CSV','uuid_string String, price_string String, time String, postcode String, a String, b String, c String, addr1 String, addr2 String, street String, locality String, town String, district String, county String, d String, e String'
);SELECT transform(number, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9], ['zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight', 'nine'], NULL) AS numbers
FROM system.numbers
LIMIT 10

读取文件

可以自动识别文件的类型,推荐字段类型

SELECT * FROM (
WITHsplitByChar(' ', postcode) AS p
SELECTtoUInt32(price_string) AS price,parseDateTimeBestEffortUS(time) AS date,p[1] AS postcode1,p[2] AS postcode2,transform(a, ['T', 'S', 'D', 'F', 'O'], ['terraced', 'semi-detached', 'detached', 'flat', 'other']) AS type,b = 'Y' AS is_new,transform(c, ['F', 'L', 'U'], ['freehold', 'leasehold', 'unknown']) AS duration, addr1, addr2, street, locality, town, district, county
FROM file('UK-house-price-dataset.csv','CSV','uuid_string String, price_string String, time String, postcode String, a String, b String, c String, addr1 String, addr2 String, street String, locality String, town String, district String, county String, d String, e String'
) SETTINGS format_csv_delimiter=','
) LIMIT 2;

自定义函数

根据需要,编写自定义函数

CREATE OR REPLACE TABLE line_changes
(version UInt32,line_change_type Enum('Add' = 1, 'Delete' = 2, 'Modify' = 3),line_number UInt32,line_content String,time datetime default now()
)
ENGINE = MergeTree
ORDER BY time;INSERT INTO default.line_changes (version,line_change_type,line_number,line_content) VALUES
(1, 'Add'   , 1, 'ClickHouse provides SQL'),
(2, 'Add'   , 2, 'with improvements'),
(3, 'Add'   , 3, 'that makes it more friendly for analytical tasks.'),
(4, 'Add'   , 2, 'with many extensions'),
(5, 'Modify', 3, 'and powerful improvements'),
(6, 'Delete', 1, ''),
(7, 'Add'   , 1, 'ClickHouse provides a superset of SQL');-- add a string (str) into an array (arr) at a specific position (pos)
CREATE OR REPLACE FUNCTION add AS (arr, pos, str) -> arrayConcat(arraySlice(arr, 1, pos-1), [str], arraySlice(arr, pos));-- delete the element at a specific position (pos) from an array (arr)
CREATE OR REPLACE FUNCTION delete AS (arr, pos) -> arrayConcat(arraySlice(arr, 1, pos-1), arraySlice(arr, pos+1));-- replace the element at a specific position (pos) in an array (arr)
CREATE OR REPLACE FUNCTION modify AS (arr, pos, str) -> arrayConcat(arraySlice(arr, 1, pos-1), [str], arraySlice(arr, pos+1));

arrayFold

SELECT arrayFold((acc, v) -> (acc + v), [10, 20, 30],  0::UInt64) AS sum;CREATE OR REPLACE VIEW text_version AS
WITH T1 AS (SELECT arrayZip(groupArray(line_change_type),groupArray(line_number),groupArray(line_content)) as line_opsFROM (SELECT * FROM line_changes WHERE version <= {version:UInt32} ORDER BY version ASC)
)
SELECT arrayJoin(arrayFold((acc, v) -> if(v.'change_type' = 'Add',       add(acc, v.'line_nr', v.'content'),if(v.'change_type' = 'Delete', delete(acc, v.'line_nr'),if(v.'change_type' = 'Modify', modify(acc, v.'line_nr', v.'content'), []))),line_ops::Array(Tuple(change_type String, line_nr UInt32, content String)),[]::Array(String))) as lines
FROM T1;SELECT * FROM text_version(version = 3);

Parallel window functions

窗口函数采用并行计算,性能大幅提升

SELECTcountry,day,max(tempAvg) AS temperature,avg(temperature) OVER (PARTITION BY country ORDER BY day ASC ROWS BETWEEN 5 PRECEDING AND CURRENT ROW) AS moving_avg_temp
FROM noaa
WHERE country != ''
GROUP BYcountry,date AS day
ORDER BYcountry ASC,day ASC

FINAL

基于FINAL及enable_vertical_final,在如下引擎
ReplacingMergeTree、 AggregatingMergeTree引擎中,可以快速查询到最新的数据

SELECTpostcode1,formatReadableQuantity(avg(price))
FROM uk_property_offers FINAL
GROUP BY postcode1
ORDER BY avg(price) DESC
LIMIT 3;SELECTpostcode1,formatReadableQuantity(avg(price))
FROM uk_property_offers
GROUP BY postcode1
ORDER BY avg(price) DESC
LIMIT 3
SETTINGS enable_vertical_final = 1;

Variant Type

SET allow_experimental_variant_type=1, use_variant_as_common_type = 1;SELECTmap('Hello', 1, 'World', 'Mark') AS x,toTypeName(x) AS type
FORMAT Vertical;SELECTarrayJoin([1, true, 3.4, 'Mark']) AS value,toTypeName(value)
Row 1:
──────
x:    {'Hello':1,'World':'Mark'}
type: Map(String, Variant(String, UInt8))┌─value─┬─toTypeName(value)─────────────────────┐
1. │ true  │ Variant(Bool, Float64, String, UInt8) │
2. │ true  │ Variant(Bool, Float64, String, UInt8) │
3. │ 3.4   │ Variant(Bool, Float64, String, UInt8) │
4. │ Mark  │ Variant(Bool, Float64, String, UInt8) │└───────┴───────────────────────────────────────┘

字符相似性函数

  • byteHammingDistance: the Hamming distance between two strings or vectors of equal length is the number of positions at which the corresponding symbols are different. In other words, it measures the minimum number of substitutions required to change one string into the other, or equivalently, the minimum number of errors that could have transformed one string into the other. In a more general context, the Hamming distance is one of several string metrics for measuring the edit distance between two sequences. It is named after the American mathematician Richard Hamming.

    • karolin” and “kathrin” is 3.
    • karolin” and “kerstin” is 3.
    • kathrin” and “kerstin” is 4.
    • 0000 and 1111 is 4.
    • 2173896 and 2233796 is 3.
  • editDistance:a way of quantifying how dissimilar two strings (e.g., words) are to one another, that is measured by counting the minimum number of operations required to transform one string into the other.

  • damerauLevenshteinDistance: a string metric for measuring the edit distance between two sequences. Informally, the Damerau–Levenshtein distance between two words is the minimum number of operations (consisting of insertions, deletions or substitutions of a single character, or transposition of two adjacent characters) required to change one word into the other.

  • jaroWinklerSimilarity: a string metric measuring an edit distance between two sequences. It is a variant of the Jaro distance metric

  • levenshteinDistance: a string metric for measuring the edit distance between two sequences. Informally, the Damerau–Levenshtein distance between two words is the minimum number of operations (consisting of insertions, deletions or substitutions of a single character, or transposition of two adjacent characters) required to change one word into the other.

https://clickhouse.com/docs/en/sql-reference/functions/string-functions#dameraulevenshteindistance

CREATE TABLE domains
(`domain` String,`rank` Float64
)
ENGINE = MergeTree
ORDER BY domain;INSERT INTO domains SELECTc2 AS domain,1 / c1 AS rank
FROM url('domains.csv', 'CSV');SELECTdomain,levenshteinDistance(domain, 'facebook.com') AS d1,damerauLevenshteinDistance(domain, 'facebook.com') AS d2,jaroSimilarity(domain, 'facebook.com') AS d3,jaroWinklerSimilarity(domain, 'facebook.com') AS d4
FROM domains
ORDER BY d1 ASC
LIMIT 10 
Query id: 6f499f27-8274-4787-819a-b510322bdce3┌─domain────────┬─d1─┬─d2─┬─────────────────d3─┬─────────────────d4─┐1. │ facebook.com  │  0 │  0 │                  1 │                  1 │2. │ facebonk.com  │  1 │  1 │ 0.8838383838383838 │ 0.9303030303030303 │3. │ fabebook.com  │  1 │  1 │  0.914141414141414 │ 0.9313131313131312 │4. │ facabook.com  │  1 │  1 │ 0.9444444444444443 │  0.961111111111111 │5. │ facobook.com  │  1 │  1 │ 0.8535353535353535 │ 0.8974747474747474 │6. │ facebook1.com │  1 │  1 │ 0.9743589743589745 │ 0.9846153846153847 │7. │ faceook.com   │  1 │  1 │ 0.9722222222222221 │ 0.9833333333333333 │8. │ faacebook.com │  1 │  1 │ 0.9743589743589745 │ 0.9794871794871796 │9. │ faceboock.com │  1 │  1 │ 0.9326923076923077 │ 0.9596153846153846 │
10. │ facebool.com  │  1 │  1 │ 0.9444444444444443 │ 0.9666666666666666 │└───────────────┴────┴────┴────────────────────┴────────────────────┘

Vectorized distance functions

可以作为向量数据库使用,支持L2,cosineDistance,IP三种向量相似度的度量方法

https://clickhouse.com/blog/clickhouse-release-24-02

WITH 'dog' AS search_term,
(SELECT vectorFROM gloveWHERE word = search_termLIMIT 1
) AS target_vector
SELECT word, cosineDistance(vector, target_vector) AS score
FROM glove
WHERE lower(word) != lower(search_term)
ORDER BY score ASC
LIMIT 5;WITH'dog' AS search_term,(SELECT vectorFROM gloveWHERE word = search_termLIMIT 1) AS target_vector
SELECTword,1 - dotProduct(vector, target_vector) AS score
FROM glove
WHERE lower(word) != lower(search_term)
ORDER BY score ASC
LIMIT 5;

Adaptive asynchronous inserts

Asynchronous inserts shift data batching from the client side to the server side: data from insert queries is inserted into a buffer first and then written to the database storage later or asynchronously respectively.
在这里插入图片描述

http://www.zhongyajixie.com/news/36849.html

相关文章:

  • wordpress+移动客户端网站优化方案案例
  • 重生做二次元网站google下载官方版
  • 做网站运维济南头条今日新闻
  • 株洲做网站多少钱网络优化软件有哪些
  • 番禺b2b网站建设公司网页怎么做出来的
  • wordpress tint主题北京优化seo排名
  • 泰安商城网站开发设计最有吸引力的营销模式
  • 卖普洱茶做网站武汉seo推广
  • 南充网站建设公司今日百度小说排行榜
  • 一个企业做网站推广的优势南昌搜索引擎优化
  • 长沙微信网站建设网站优化的意义
  • 网站做微信支付宝支付接口百度竞价广告推广
  • 公司的 SEO与网站建设网络推广协议
  • 网站备案电话没接seo检查工具
  • 在线教育网站模板上海seo优化
  • 校园网站建设需求世界最新新闻
  • 营销网站建设的公司包头seo
  • 动漫做暧昧视频网站郴州seo
  • 编程猫少儿编程网站指数函数图像及性质
  • 影视自助建站谷歌推广费用
  • 做外贸的网站怎么建立上海今天发生的重大新闻
  • 重庆移动网站建设小程序怎么引流推广
  • 新手做网站详细步骤宁波seo外包推广平台
  • 创网站需要什么关键词优化外包
  • 张家界旅游网站官网优化关键词有哪些方法
  • 红袖添香网站建设时间自媒体营销推广方案
  • 类似知乎可以做推广的网站谷歌seo优化怎么做
  • 蒙古文政府网站群建设资料体验式营销
  • 企业建立一个网站步骤快速网络推广
  • 免费商城网站申请石家庄市人民政府官网