当前位置: 首页 > news >正文

网站域名备案证书腾讯企业邮箱登录入口

网站域名备案证书,腾讯企业邮箱登录入口,做十来个网站优化,兰州做高端网站ODConv动态卷积模块 ODConv可以视作CondConv的延续,将CondConv中一个维度上的动态特性进行了扩展,同时了考虑了空域、输入通道、输出通道等维度上的动态性,故称之为全维度动态卷积。ODConv通过并行策略采用多维注意力机制沿核空间的四个维度…

ODConv动态卷积模块

ODConv可以视作CondConv的延续,将CondConv中一个维度上的动态特性进行了扩展,同时了考虑了空域、输入通道、输出通道等维度上的动态性,故称之为全维度动态卷积。ODConv通过并行策略采用多维注意力机制沿核空间的四个维度学习互补性注意力。作为一种“即插即用”的操作,它可以轻易的嵌入到现有CNN网络中。ImageNet分类与COCO检测任务上的实验验证了所提ODConv的优异性:即可提升大模型的性能,又可提升轻量型模型的性能,实乃万金油是也!值得一提的是,受益于其改进的特征提取能力,ODConv搭配一个卷积核时仍可取得与现有多核动态卷积相当甚至更优的性能。

原文地址:Omni-Dimensional Dynamic Convolution

ODConv结构图
代码实现:

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.autograd
from models.common import Conv, autopadclass Attention(nn.Module):def __init__(self, in_planes, out_planes, kernel_size, groups=1, reduction=0.0625, kernel_num=4, min_channel=16):super(Attention, self).__init__()attention_channel = max(int(in_planes * reduction), min_channel)self.kernel_size = kernel_sizeself.kernel_num = kernel_numself.temperature = 1.0self.avgpool = nn.AdaptiveAvgPool2d(1)self.fc = Conv(in_planes, attention_channel, act=nn.ReLU(inplace=True))self.channel_fc = nn.Conv2d(attention_channel, in_planes, 1, bias=True)self.func_channel = self.get_channel_attentionif in_planes == groups and in_planes == out_planes:  # depth-wise convolutionself.func_filter = self.skipelse:self.filter_fc = nn.Conv2d(attention_channel, out_planes, 1, bias=True)self.func_filter = self.get_filter_attentionif kernel_size == 1:  # point-wise convolutionself.func_spatial = self.skipelse:self.spatial_fc = nn.Conv2d(attention_channel, kernel_size * kernel_size, 1, bias=True)self.func_spatial = self.get_spatial_attentionif kernel_num == 1:self.func_kernel = self.skipelse:self.kernel_fc = nn.Conv2d(attention_channel, kernel_num, 1, bias=True)self.func_kernel = self.get_kernel_attentionself._initialize_weights()def _initialize_weights(self):for m in self.modules():if isinstance(m, nn.Conv2d):nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')if m.bias is not None:nn.init.constant_(m.bias, 0)if isinstance(m, nn.BatchNorm2d):nn.init.constant_(m.weight, 1)nn.init.constant_(m.bias, 0)def update_temperature(self, temperature):self.temperature = temperature@staticmethoddef skip(_):return 1.0def get_channel_attention(self, x):channel_attention = torch.sigmoid(self.channel_fc(x).view(x.size(0), -1, 1, 1) / self.temperature)return channel_attentiondef get_filter_attention(self, x):filter_attention = torch.sigmoid(self.filter_fc(x).view(x.size(0), -1, 1, 1) / self.temperature)return filter_attentiondef get_spatial_attention(self, x):spatial_attention = self.spatial_fc(x).view(x.size(0), 1, 1, 1, self.kernel_size, self.kernel_size)spatial_attention = torch.sigmoid(spatial_attention / self.temperature)return spatial_attentiondef get_kernel_attention(self, x):kernel_attention = self.kernel_fc(x).view(x.size(0), -1, 1, 1, 1, 1)kernel_attention = F.softmax(kernel_attention / self.temperature, dim=1)return kernel_attentiondef forward(self, x):x = self.avgpool(x)x = self.fc(x)return self.func_channel(x), self.func_filter(x), self.func_spatial(x), self.func_kernel(x)class ODConv2d(nn.Module):def __init__(self, in_planes, out_planes, k, s=1, p=None, g=1, act=True, d=1,reduction=0.0625, kernel_num=1):super(ODConv2d, self).__init__()self.in_planes = in_planesself.out_planes = out_planesself.kernel_size = kself.stride = sself.padding = autopad(k, p)self.dilation = dself.groups = gself.kernel_num = kernel_numself.attention = Attention(in_planes, out_planes, k, groups=g,reduction=reduction, kernel_num=kernel_num)self.weight = nn.Parameter(torch.randn(kernel_num, out_planes, in_planes//g, k, k),requires_grad=True)self._initialize_weights()self.bn = nn.BatchNorm2d(out_planes)self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())if self.kernel_size == 1 and self.kernel_num == 1:self._forward_impl = self._forward_impl_pw1xelse:self._forward_impl = self._forward_impl_commondef _initialize_weights(self):for i in range(self.kernel_num):nn.init.kaiming_normal_(self.weight[i], mode='fan_out', nonlinearity='relu')def update_temperature(self, temperature):self.attention.update_temperature(temperature)def _forward_impl_common(self, x):# Multiplying channel attention (or filter attention) to weights and feature maps are equivalent,# while we observe that when using the latter method the models will run faster with less gpu memory cost.channel_attention, filter_attention, spatial_attention, kernel_attention = self.attention(x)batch_size, in_planes, height, width = x.size()x = x * channel_attentionx = x.reshape(1, -1, height, width)aggregate_weight = spatial_attention * kernel_attention * self.weight.unsqueeze(dim=0)aggregate_weight = torch.sum(aggregate_weight, dim=1).view([-1, self.in_planes // self.groups, self.kernel_size, self.kernel_size])output = F.conv2d(x, weight=aggregate_weight, bias=None, stride=self.stride, padding=self.padding,dilation=self.dilation, groups=self.groups * batch_size)output = output.view(batch_size, self.out_planes, output.size(-2), output.size(-1))output = output * filter_attentionreturn outputdef _forward_impl_pw1x(self, x):channel_attention, filter_attention, spatial_attention, kernel_attention = self.attention(x)x = x * channel_attentionoutput = F.conv2d(x, weight=self.weight.squeeze(dim=0), bias=None, stride=self.stride, padding=self.padding,dilation=self.dilation, groups=self.groups)output = output * filter_attentionreturn outputdef forward(self, x):return self.act(self.bn(self._forward_impl(x)))
http://www.zhongyajixie.com/news/35439.html

相关文章:

  • 网站栏目优化google手机官网
  • 乐山网站开发seo刷关键词排名优化
  • 网站内容采编怎么做昆明抖音推广
  • 可以做英语翻译兼职的网站营销策划咨询机构
  • 东莞哪家网站营销公司好seo的收费标准
  • 哪些网站可以做移动端模板自己在家怎么做跨境电商
  • 软件开发 系统开发 网站开发服务seo手机端优化
  • 创建网站的快捷方式电商平台怎么运营的
  • 北京多用户商城网站建设东莞seo软件
  • wordpress评论区镶嵌图片浙江seo外包
  • 营销型网站建设找哪家一个人怎么做独立站shopify
  • wordpress指定分类投稿澳门seo关键词排名
  • 做网站公司找意向客户seo外包公司专家
  • 有用织梦做的大网站吗常见的线下推广渠道有哪些
  • 网站前台后台模板下载西安百度推广代运营
  • 哈尔滨网站建设工作室seo快速排名点击
  • 网站开发的系统需求企业获客方式
  • 怎样做网站让百度能找到网页代码大全
  • 微信你的意义是什么小程序优化网站排名方法教程
  • 怎么做提卡网站网站制作软件免费下载
  • 武汉便宜的做网站公司舆情报告
  • 益阳建站网站制作网站检测工具
  • 河南简介网站设计湖南省人民政府
  • 手机与电脑网站制作可以放友情链接的网站
  • 做网站业务员如何跟客户沟通手机网站
  • 网站设计制作报价营销托管全网营销推广
  • 建网站买什么主机外贸网站平台都有哪些
  • 生鲜市场型网站开发seo优化评论
  • 青岛独立站开发公司个人建网站的详细步骤
  • 网站前期推广开网店哪个平台靠谱