当前位置: 首页 > news >正文

用什么软件做网站图片整站seo排名

用什么软件做网站图片,整站seo排名,设计风格网站,汇鑫网站建设提取人脸 导入所需的库创建窗口显示原始图片显示检测到的人脸创建全局变量定义字体对象定义一个函数select_image定义了extract_faces函数设置按钮运行GUI主循环运行显示 导入所需的库 tkinter:用于创建图形用户界面。 filedialog:用于打开文件对话框。 …

提取人脸

    • 导入所需的库
    • 创建窗口
    • 显示原始图片
    • 显示检测到的人脸
    • 创建全局变量
    • 定义字体对象
    • 定义一个函数select_image
    • 定义了extract_faces函数
    • 设置按钮
    • 运行GUI主循环
    • 运行显示

导入所需的库

tkinter:用于创建图形用户界面。 filedialog:用于打开文件对话框。
cv2:OpenCV库,用于图像处理和计算机视觉。 PIL(Python Imaging Library)和ImageTk:用于处理和显示图像。 messagebox:用于显示消息框。
subprocess:用于执行系统命令。

import tkinter as tk
from tkinter import filedialog
import cv2
from PIL import Image, ImageTk
from tkinter import messagebox
import subprocess

创建窗口

创建一个Tkinter窗口对象win,并设置窗口的标题和大小。

win = tk.Tk()
win.title("人脸提取")
win.geometry("800x650")

显示原始图片

创建一个标签(Label)对象image_label_original,用于显示原始图片。然后使用pack()方法将标签放置在窗口的左侧,并设置一些填充和边距。

image_label_original = tk.Label(win)
image_label_original.pack(side=tk.LEFT, padx=10, pady=80)

显示检测到的人脸

创建另一个标签(Label)对象image_label_detected,用于显示检测到的人脸。同样使用pack()方法将标签放置在窗口的左侧,并设置一些填充和边距。

image_label_detected = tk.Label(win)
image_label_detected.pack(side=tk.LEFT, padx=10, pady=80)

创建全局变量

创建一个全局变量selected_image_path,用于存储选择的图片路径。

selected_image_path = None

定义字体对象

定义一个字体对象my_font,用于按钮和其他文本控件。

my_font = ("Times New Roman", 20)

定义一个函数select_image

定义一个函数select_image,当按钮被点击时,它会打开文件选择对话框,让用户选择图片。然后使用OpenCV加载图片,转换颜色空间,使用PIL调整图片大小,并使用Tkinter显示图片。

def select_image(): - 定义一个函数,当按钮被点击时,会执行这个函数。 global selected_image_path :声明selected_image_path是一个全局变量,这样在函数内部可以修改它的值。
selected_image_path = filedialog.askopenfilename()
打开文件选择对话框,让用户选择一个文件。askopenfilename():函数返回用户选择的文件路径。 img = cv2.imread(selected_image_path) : 使用OpenCV的imread函数从选择的文件路径中读取图片。
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
:将图片从BGR颜色空间转换到RGB颜色空间。 img_pil = Image.fromarray(img_rgb)
:将NumPy数组转换为PIL图像。 img_pil = img_pil.resize((300, 300), Image.Resampling.LANCZOS) : 使用LANCZOS插值方法将图像大小调整为300x300像素。 img_tk = ImageTk.PhotoImage(image=img_pil) :将PIL图像转换为Tkinter可以显示的PhotoImage对象。
image_label_original.config(image=img_tk)
配置标签image_label_original以显示新加载的图片。 image_label_original.image = img_tk : 设置标签的image属性,以便在Tkinter中显示图像。

def select_image():global selected_image_path# 打开文件选择对话框selected_image_path = filedialog.askopenfilename()# 使用OpenCV加载图片img = cv2.imread(selected_image_path)img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)img_pil = Image.fromarray(img_rgb)img_pil = img_pil.resize((300, 300), Image.Resampling.LANCZOS)  # 调整图片大小为300x300img_tk = ImageTk.PhotoImage(image=img_pil)# 显示原始图片image_label_original.config(image=img_tk)image_label_original.image = img_tk

定义了extract_faces函数

if selected_image_path: - 检查selected_image_path是否已经被设置,即是否已经选择了图片。
img = cv2.imread(selected_image_path) : 使用OpenCV的imread函数加载选择的图片。
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) :将图片从BGR颜色空间转换到灰度颜色空间。
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml') :加载预训练的人脸检测Haar级联分类器。
faces = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5)
:使用加载的分类器在灰度图像中检测多个人脸,并返回它们的坐标和大小。
print(f"Detected faces: {len(faces)}") : 打印检测到的人脸数量。
if len(faces) > 0: 检查是否检测到人脸。
(x, y, w, h) = faces[0] : 获取第一个检测到的人脸的坐标和大小。
face_img = img[y:y+h, x:x+w]
:从原始图片中裁剪出人脸区域。
face_img = cv2.cvtColor(face_img, cv2.COLOR_BGR2RGB)
: 将裁剪的人脸图像从BGR颜色空间转换到RGB颜色空间。
face_img = Image.fromarray(face_img)
将裁剪后的图像从NumPy数组转换为PIL图像。 face_img = face_img.resize((300, 300), Image.Resampling.LANCZOS) : 使用LANCZOS插值方法将图像大小调整为300x300像素。
face_img = ImageTk.PhotoImage(face_img) : 将PIL图像转换为Tkinter可以显示的PhotoImage对象。 image_label_detected.config(image=face_img)
配置标签image_label_detected以显示新的人脸图像。
image_label_detected.image = face_img : 设置标签的image属性,以便在Tkinter中显示图像。 else: - 如果未检测到人脸,执行以下代码。
messagebox.showinfo("信息", "没有检测到人脸") : 显示一个消息框,告知用户没有检测到人脸。 else:
如果selected_image_path未设置,执行以下代码。 messagebox.showwarning("警告", "请先选择一张图片") :显示一个警告消息框,告知用户需要先选择一张图片。

def extract_faces():if selected_image_path:# 使用OpenCV的人脸检测img = cv2.imread(selected_image_path)gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')faces = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5)# 打印检测到的人脸数量print(f"Detected faces: {len(faces)}")# 如果检测到人脸,裁剪并显示if len(faces) > 0:(x, y, w, h) = faces[0]  # 获取第一个检测到的人脸print(f"Face coordinates: x={x}, y={y}, w={w}, h={h}")face_img = img[y:y+h, x:x+w]  # 裁剪人脸区域# 转换为PIL图像并调整大小face_img = cv2.cvtColor(face_img, cv2.COLOR_BGR2RGB)face_img = Image.fromarray(face_img)face_img = face_img.resize((300, 300), Image.Resampling.LANCZOS)  # 调整人脸图片大小为300x300face_img = ImageTk.PhotoImage(face_img)image_label_detected.config(image=face_img)image_label_detected.image = face_imgelse:messagebox.showinfo("信息", "没有检测到人脸")else:messagebox.showwarning("警告", "请先选择一张图片")

设置按钮

button_select = tk.Button(win, text="选择图片", font=my_font, command=select_image, fg='black'):
创建一个名为button_select的按钮,显示文本为"选择图片",字体样式为my_font,按钮点击时执行select_image函数,文本颜色为黑色。

button_select.place(x=150, y=12):
将button_select按钮放置在窗口win的特定位置,横坐标为150,纵坐标为12。

button_extract = tk.Button(win, text="提取人脸", font=my_font, command=extract_faces, fg='black'):
创建另一个名为button_extract的按钮,显示文本为"提取人脸",字体样式为my_font,按钮点击时执行extract_faces函数,文本颜色为黑色。

button_extract.place(x=450, y=12):
将button_extract按钮放置在窗口win的特定位置,横坐标为450,纵坐标为12。

创建选择图片和识别人脸的按钮
button_select = tk.Button(win, text="选择图片", font=my_font, command=select_image, fg='black')
button_select.place(x=150, y=12)button_extract = tk.Button(win, text="提取人脸", font=my_font, command=extract_faces, fg='black')
button_extract.place(x=450, y=12)

运行GUI主循环

win.mainloop(): 进入窗口win的主事件循环,使窗口显示并等待用户操作,直到用户关闭窗口。

win.mainloop()

运行显示

在这里插入图片描述
全部代码:

import tkinter as tk
from tkinter import filedialog
import cv2
from PIL import Image, ImageTk
from tkinter import messagebox
import subprocesswin = tk.Tk()
win.title("人脸提取")
win.geometry("800x650")image_label_original = tk.Label(win)
image_label_original.pack(side=tk.LEFT, padx=10, pady=80)image_label_detected = tk.Label(win)
image_label_detected.pack(side=tk.LEFT, padx=10, pady=80)selected_image_path = Nonemy_font = ("Times New Roman", 20)def select_image():global selected_image_path# 打开文件选择对话框selected_image_path = filedialog.askopenfilename()# 使用OpenCV加载图片img = cv2.imread(selected_image_path)img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)img_pil = Image.fromarray(img_rgb)img_pil = img_pil.resize((300, 300), Image.Resampling.LANCZOS)  # 调整图片大小为300x300img_tk = ImageTk.PhotoImage(image=img_pil)# 显示原始图片image_label_original.config(image=img_tk)image_label_original.image = img_tk# 人脸检测函数
def extract_faces():if selected_image_path:# 使用OpenCV的人脸检测img = cv2.imread(selected_image_path)gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')faces = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5)# 打印检测到的人脸数量print(f"Detected faces: {len(faces)}")# 如果检测到人脸,裁剪并显示if len(faces) > 0:(x, y, w, h) = faces[0]  # 获取第一个检测到的人脸print(f"Face coordinates: x={x}, y={y}, w={w}, h={h}")face_img = img[y:y+h, x:x+w]  # 裁剪人脸区域# 转换为PIL图像并调整大小face_img = cv2.cvtColor(face_img, cv2.COLOR_BGR2RGB)face_img = Image.fromarray(face_img)face_img = face_img.resize((300, 300), Image.Resampling.LANCZOS)  # 调整人脸图片大小为300x300face_img = ImageTk.PhotoImage(face_img)image_label_detected.config(image=face_img)image_label_detected.image = face_imgelse:messagebox.showinfo("信息", "没有检测到人脸")else:messagebox.showwarning("警告", "请先选择一张图片")# 创建选择图片和识别人脸的按钮
button_select = tk.Button(win, text="选择图片", font=my_font, command=select_image, fg='black')
button_select.place(x=150, y=12)button_extract = tk.Button(win, text="提取人脸", font=my_font, command=extract_faces, fg='black')
button_extract.place(x=450, y=12)win.mainloop()
http://www.zhongyajixie.com/news/3446.html

相关文章:

  • 嘉兴网站建设推广媒体发稿平台
  • 营销行网站建设帮别人发广告赚钱平台
  • 做防护信息的网站最近三天的新闻大事简短
  • 网站开发职业规划咨询公司
  • 台州做网站联系方式苏州手机关键词优化
  • 安康网站建设电话seo培训学院官网
  • 网站接入支付宝需要网站备案吗十大经典事件营销案例分析
  • php网站后台教程百度手游排行榜
  • 拉萨网站建设哪家公司好广州seo优化效果
  • 专业做网站制作的公司网站引流推广
  • 商会网站的建设百度推广软件
  • 做自己的第一个网站百度seo新算法
  • 济宁做公司网站什么叫做优化
  • 购物网站制作怎么做广告投放网站
  • 上海个人网站建设关键词查询工具软件
  • 做外贸公司网站怎么做网络营销的三种方式
  • 成都有啥好玩的地方天津百度快速优化排名
  • 石家庄手机网站建设软文推广公司有哪些
  • 免费资料网站网址下载营销模式和营销策略
  • 做暖暖视频免费老司机网站seo外链建设的方法
  • 推推蛙网站建设自动发帖软件
  • 潍坊市做网站seo是搜索引擎优化吗
  • 青羊区网站设计站长工具亚洲高清
  • 外贸 静态网站 怎么做360建站官网
  • 宣传工作网站建设作用2024年重大新闻摘抄
  • 国外有哪些网站做推广的比较好b站2020推广网站
  • 做网站需要多少钱知乎小网站广告投放
  • 抖音号出售网站宁波品牌网站推广优化
  • 广西开网站信息公司北京seo顾问外包
  • 网站怎么才可以不备案软文类型