当前位置: 首页 > news >正文

哪有做网站的 优帮云免费域名服务器

哪有做网站的 优帮云,免费域名服务器,seo网络优化,阿里网站建设视频教程⭐️ 前言 小编让ChatGPT写一个风格迁移的例子,注意注意,代码无任何改动,直接运行,输出结果。 额。。。。这不是风格转换后的结果图。 ⭐️ 风格迁移基本原理 风格迁移是一种计算机视觉领域的图像处理技术,它的目标…

⭐️ 前言

小编让ChatGPT写一个风格迁移的例子,注意注意,代码无任何改动,直接运行,输出结果。
在这里插入图片描述
额。。。。这不是风格转换后的结果图。

⭐️ 风格迁移基本原理

风格迁移是一种计算机视觉领域的图像处理技术,它的目标是将一张图像的内容与另一张图像的艺术风格相结合,创造出一张新的图像。这一技术通过深度学习的方法,结合卷积神经网络(CNN)和损失函数,实现了在内容和风格之间进行有效迁移。

在这里插入图片描述

下面详细探讨风格迁移的原理:

1. 内容表示:

内容图像: 风格迁移的源,提供图像的内容信息。
内容表示: 使用预训练的卷积神经网络,通常选择网络中的某一层,提取内容图像的特征表示。

2. 风格表示:

风格图像: 风格迁移的目标,提供所需的艺术风格。
风格表示: 同样使用卷积神经网络,选择多个层次的特征表示,以捕捉图像的不同尺度和层次的艺术风格。

在这里插入图片描述

5. 优化过程:

通过调整生成图像的像素值,以最小化总体损失函数,来生成最终的风格迁移图像。这通常通过梯度下降等优化算法来实现。

在这里插入图片描述

代码如下:

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import models, transforms
from PIL import Image
import numpy as np# 加载预训练的VGG模型
def load_vgg_model():vgg = models.vgg19(pretrained=True).featuresfor param in vgg.parameters():param.requires_grad_(False)return vgg# 图像预处理
def load_image(image_path, transform=None, max_size=None, shape=None):image = Image.open(image_path).convert('RGB')if max_size:scale = max_size / max(image.size)size = tuple(int(x * scale) for x in image.size)image = image.resize(size)if shape:image = image.resize(shape)if transform:image = transform(image).unsqueeze(0)return image# 图像后处理
def convert_image(tensor):image = tensor.to("cpu").clone().detach()image = image.numpy().squeeze()image = image.transpose(1,2,0)image = image * np.array((0.229, 0.224, 0.225)) + np.array((0.485, 0.456, 0.406))image = image.clip(0, 1)return image# 定义风格迁移网络
class StyleTransferNet(nn.Module):def __init__(self, content_layers, style_layers):super(StyleTransferNet, self).__init__()self.vgg = load_vgg_model()self.content_layers = content_layersself.style_layers = style_layersdef forward(self, x):content_outputs = []style_outputs = []for i, layer in enumerate(self.vgg):x = layer(x)if i in self.content_layers:content_outputs.append(x)if i in self.style_layers:style_outputs.append(x)return content_outputs, style_outputs# 损失函数
def content_loss(target, generated):return torch.mean((target - generated)**2)def gram_matrix(tensor):_, d, h, w = tensor.size()tensor = tensor.view(d, h * w)gram = torch.mm(tensor, tensor.t())return gramdef style_loss(target, generated):target_gram = gram_matrix(target)generated_gram = gram_matrix(generated)return torch.mean((target_gram - generated_gram)**2)def total_variation_loss(image):return torch.sum(torch.abs(image[:, :, :, :-1] - image[:, :, :, 1:])) + \torch.sum(torch.abs(image[:, :, :-1, :] - image[:, :, 1:, :]))# 风格迁移主函数
def style_transfer(content_path, style_path, output_path, num_steps=10000, content_weight=1, style_weight=1e6, tv_weight=1e-6):device = torch.device("cuda" if torch.cuda.is_available() else "cpu")content_image = load_image(content_path, transform, max_size=400)style_image = load_image(style_path, transform, shape=[content_image.size(2), content_image.size(3)])content_image = content_image.to(device)style_image = style_image.to(device)model = StyleTransferNet(content_layers, style_layers).to(device).eval()# 优化器optimizer = optim.Adam([content_image.requires_grad_(), style_image.requires_grad_()], lr=0.01)for step in range(num_steps):optimizer.zero_grad()content_outputs, style_outputs = model(content_image)content_loss_value = 0for target, generated in zip(content_outputs, model(content_image)[0]):content_loss_value += content_loss(target, generated)style_loss_value = 0for target, generated in zip(style_outputs, model(style_image)[1]):style_loss_value += style_loss(target, generated)tv_loss_value = total_variation_loss(content_image)total_loss = content_weight * content_loss_value + style_weight * style_loss_value + tv_weight * tv_loss_valuetotal_loss.backward()optimizer.step()if step % 50 == 0 or step == num_steps - 1:print(f"Step {step}/{num_steps}, Total Loss: {total_loss.item()}")# 保存生成的图像output_image = convert_image(content_image)Image.fromarray((output_image * 255).astype(np.uint8)).save(output_path)# 主程序
content_image_path = "./content.jpg"
style_image_path = "./style.jpg"
output_image_path = "./image.jpg"transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
])content_layers = [21]
style_layers = [0, 5, 10, 19, 28]style_transfer(content_image_path, style_image_path, output_image_path)

输入的图片是这两张
在这里插入图片描述
在这里插入图片描述

输出的图片是这样(运行了10000轮):

在这里插入图片描述

风格是有了,调整一些参数,结果会有不同。

风格迁移技术的核心思想是通过深度学习网络将图像的内容和风格进行数学建模,然后通过优化损失函数来生成具有目标风格的图像。这使得艺术风格的迁移成为可能,为图像处理领域带来了新的可能性。

笔者水平有限,若有不对的地方欢迎评论指正!

http://www.zhongyajixie.com/news/33738.html

相关文章:

  • 微信网站开发教程视频教程手机自己怎么建电影网站
  • 心雨在线高端网站建设免费网络推广网址
  • 织梦 营销型网站网站快速收录付费入口
  • 买个网站多少钱广东疫情最新消息今天又封了
  • 企业建站设计百度如何做广告
  • 快普网站怎么做采购退货网站友情链接检测
  • 娄底网站建设wyo8搜索引擎推广方式
  • 企业网站模板湖南岚鸿谷歌浏览器2021最新版
  • 做seo推广网站网站免费推广平台
  • 适合个人公众号的名字最新黑帽seo教程
  • 百度站长工具链接提交站长之家最新域名查询
  • 做网站 技术网络优化培训要多少钱
  • 自己做的网站怎么放视频教程杭州seo推广服务
  • 阿里云网站建设基本流程如何推广app赚钱
  • 建视频网站需要多少钱软文营销经典案例
  • 如何制作网页导航栏深圳防疫措施优化
  • 深圳做网站那家公司好b站推广渠道
  • 房地产开发公司职位如何优化关键词的方法
  • 企业网站建设市场前景企业网站分析报告
  • 域名历史价格查询秦洁婷seo博客
  • 做网站找 汇搜网络创建网站平台
  • 保定建网站需要多少钱网络营销模式有哪些类型
  • 学校网站网站建设seo超级外链工具
  • 建设部网站王尚春网易最新消息新闻
  • 大兴安岭网站建设公司深圳网站搜索优化
  • 网站建设首选玖艺建站信得过宣传推广方案怎么写
  • 做网站公司专业上海seo推广
  • 天水+网站建设画质优化app下载
  • 平面设计培训班教程seo企业站收录
  • 如何做宣传自己公司网站百度信息流怎么做效果好