当前位置: 首页 > news >正文

芜湖酒店网站建设软文广告经典案例600

芜湖酒店网站建设,软文广告经典案例600,合肥做网站专家,电子商城网站开发多少钱💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

在神经网络训练中,使用传统的梯度下降法可能会受到局部极值问题的影响,导致训练结果不够稳定或收敛速度较慢。为了改进神经网络的权值训练,考虑结合灰狼优化(GWO)、帝国竞争算法(ICA)和粒子群优化(PSO)等优化算法。下面是方法:

初始化神经网络: 首先,根据问题的特点和需求,设计并初始化神经网络的结构,包括神经元层、激活函数等。

梯度下降法训练: 使用传统的梯度下降法对神经网络进行初始训练,以获得一个基本的权值设置。

算法集成: 将灰狼优化(GWO)、帝国竞争算法(ICA)和粒子群优化(PSO)三种优化算法集成到神经网络的权值调整过程中。

多种算法运行: 为了充分利用这些算法的优势,可以采取以下策略:

在每次权值更新之前,使用三种算法分别对神经网络权值进行优化,得到三组不同的权值。

将这三组权值分别代入神经网络进行预测或训练,得到对应的损失函数值。

根据损失函数值的大小,选择其中表现最好的一组权值来更新神经网络。

参数调整: 每个优化算法都有一些参数需要调整,如迭代次数、种群大小等。您可以通过实验和交叉验证来选择最佳的参数组合,以达到更好的性能。

终止条件: 设置合适的终止条件,如达到一定的迭代次数或损失函数值足够小。

结果分析: 最后,比较集成了三种优化算法的权值训练方法与单独使用梯度下降法的效果。分析哪种方法在收敛速度、稳定性和精度方面表现更好。

📚2 运行结果

主函数部分代码:

clc;
clear;
close all;
​
%% Problem Definition
%% loading dataset %%
load('Weight_mat.mat')
load('trainset.mat')
load('testset.mat')
​
var_num=71;            
VarSize=[1 var_num];  
VarMin=-5;        
VarMax= 5;       
%% PSO Parameters
max_epoch=100;      
ini_pop=50;        
​
% Constriction Coefficients
phi1=2.1;
phi2=2.1;
phi=phi1+phi2;
khi=2/(phi-2+sqrt(phi^2-4*phi));
w=khi;          % Inertia Weight
wdamp=0.99;        % Inertia Weight Damping Ratio
c1=khi*phi1;    % Personal Learning Coefficient
c2=khi*phi2;    % Global Learning Coefficient
​
% Velocity Limits
VelMax=0.1*(VarMax-VarMin);
VelMin=-VelMax;
%% Initialization
​
empty_particle.Position=[];
empty_particle.Cost=[];
empty_particle.Velocity=[];
empty_particle.Best.Position=[];
empty_particle.Best.Cost=[];
​
particle=repmat(empty_particle,ini_pop,1);  
GlobalBest.Cost=inf;
Cost_Test= zeros(50,1);
for i=1:ini_pop% Initialize Positionparticle(i).Position= WEIGHTS(i ,:);% Initialize Velocityparticle(i).Velocity=zeros(VarSize);% Evaluationparticle(i).Cost=mape_calc(particle(i).Position,trainset);Cost_Test(i)=mape_calc(particle(i).Position,testset);% Update Personal Bestparticle(i).Best.Position=particle(i).Position;particle(i).Best.Cost=particle(i).Cost;% Update Global Bestif particle(i).Best.Cost<GlobalBest.CostGlobalBest=particle(i).Best;endend
​
BestCost_Train=zeros(max_epoch,1);
BestCost_Test=zeros(max_epoch,1);
[~, SortOrder]=sort(Cost_Test);
Cost_Test =Cost_Test(SortOrder);
%% PSO Main Loop
for it=1:max_epochfor i=1:ini_pop% Update Velocityparticle(i).Velocity = w*particle(i).Velocity ...+c1*rand(VarSize).*(particle(i).Best.Position-particle(i).Position) ...+c2*rand(VarSize).*(GlobalBest.Position-particle(i).Position);% Apply Velocity Limitsparticle(i).Velocity = max(particle(i).Velocity,VelMin);particle(i).Velocity = min(particle(i).Velocity,VelMax);% Update Positionparticle(i).Position = particle(i).Position + particle(i).Velocity;IsOutside=(particle(i).Position<VarMin | particle(i).Position>VarMax);particle(i).Velocity(IsOutside)=-particle(i).Velocity(IsOutside);% Apply Position Limitsparticle(i).Position = max(particle(i).Position,VarMin);particle(i).Position = min(particle(i).Position,VarMax);% Evaluationparticle(i).Cost = mape_calc(particle(i).Position,trainset);for l= 1:ini_popCost_Test(l)=mape_calc(particle(l).Position,testset);end[~, SortOrder]=sort(Cost_Test);Cost_Test =Cost_Test(SortOrder);BestCost_Test(it) = Cost_Test(1);% Update Personal Bestif particle(i).Cost<particle(i).Best.Costparticle(i).Best.Position=particle(i).Position;particle(i).Best.Cost=particle(i).Cost;% Update Global Bestif particle(i).Best.Cost<GlobalBest.CostGlobalBest=particle(i).Best;endendend

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

​[1]郭跃东,宋旭东.梯度下降法的分析和改进[J].科技展望,2016,26(15):115+117.

🌈4 Matlab代码实现

http://www.zhongyajixie.com/news/29427.html

相关文章:

  • 免费制作网站用什么做google seo怎么优化
  • 手机端怎么打开响应式的网站网站子域名查询
  • 网站建设日程安排谷歌seo工具
  • php做的商城网站设计论文网络视频营销策略有哪些
  • 企业网站制作模板免费宁波网络营销怎么做
  • 网站建设 太原当阳seo外包
  • 广告网站建设流程网络营销策略论文
  • vue做的网站文字不能复制搜索引擎推广实训
  • 怎么实现网站建设报价方案旅游seo整站优化
  • 在家做兼职的比较靠谱的网站营销app
  • wordpress填写qq自动评论seo全称是什么
  • 丹阳疫情最新消息今天新增seo优化什么意思
  • 做黄色网站赚钱么网络广告策划的步骤
  • 做app和网站个人网站的制作
  • 中山大学精品课程网站火星时代教育培训机构怎么样
  • 做一个小说阅读网站怎么做百度热搜榜排名
  • 中英文外贸网站模板 生成静态html网址大全qq浏览器
  • 商标和logo的区别深圳专门做seo的公司
  • 家居装饰网站设计论文沈阳今日新闻头条
  • 网站建设就业前景2017济南搜索引擎优化网站
  • 在线旅游网站开发分析报告网络服务投诉平台
  • 买了网站模版怎么做百度搜索关键词查询
  • 小型服务器做网站网站的seo是什么意思
  • 蓝色网站模板永久免费自助建站平台
  • 做张家界旅游网站多少钱全网推广网站
  • 怎样做安居客网站百度小说搜索排行榜
  • WordPress 手机版跳转网站排名优化师
  • 成都哪家网站建设强seo有哪些作用
  • wordpress全站加速宁波网站推广运营公司
  • 甘肃建设厅官方网站项目负责人免费python在线网站