当前位置: 首页 > news >正文

电商网站建设代码大全关键词热度查询工具

电商网站建设代码大全,关键词热度查询工具,网站设计网站机构,全球最好的域名注册公司在训练之前先要按照一定目录格式准备数据: VOC标签格式转yolo格式并划分训练集和测试集_爱钓鱼的歪猴的博客-CSDN博客 目录 1、修改数据配置文件 2、修改模型配置文件 3、训练 1、修改数据配置文件 coco.yaml 拷贝data/scripts/coco.yaml文件, pa…

在训练之前先要按照一定目录格式准备数据:

VOC标签格式转yolo格式并划分训练集和测试集_爱钓鱼的歪猴的博客-CSDN博客


 

目录

1、修改数据配置文件

 2、修改模型配置文件

 3、训练


1、修改数据配置文件

coco.yaml

拷贝data/scripts/coco.yaml文件,

path 修改为VOCdevkit文件夹所在目录

train:修改为yolov5_train.txt

val: 修改为yolov5_val.txt

names也进行修改,保存为my-anther.yaml

具体如下:

 这样模仿VOC数据集的目录结构,与yolov5项目里的代码所匹配

 2、修改模型配置文件

把项目models/yolov5n.yaml文件拷贝一份,只修改类别数量(num of classes)就成,保存为my-yolov5n.yaml

 3、训练

在项目目录下开启终端

运行:

 python train.py  --data my-anther.yaml --epochs 1 --weights yolov5n.pt --cfg my-yolov5n.yaml --batch-size 24

如果有GPU ,命令后面添加 --device 0。这里没有GPU,所以只跑一个 epoch。

batch可选择调为16、24、40、64、128....。先选一个小的,保证能跑起来,然后慢慢加大,如果内存不足报错,就返回上一个batch大小。

输出信息:

(yolo) jason@honor:~/PycharmProjects/pytorch_learn/yolo/yolov5-7.0$ python train.py  --data my-anther.yaml --epochs 1 --weights yolov5n.pt --cfg my-yolov5n.yaml --batch-size 24
train: weights=yolov5n.pt, cfg=my-yolov5n.yaml, data=my-anther.yaml, hyp=data/hyps/hyp.scratch-low.yaml, epochs=1, batch_size=24, imgsz=640, rect=False, resume=False, nosave=False, noval=False, noautoanchor=False, noplots=False, evolve=None, bucket=, cache=None, image_weights=False, device=, multi_scale=False, single_cls=False, optimizer=SGD, sync_bn=False, workers=8, project=runs/train, name=exp, exist_ok=False, quad=False, cos_lr=False, label_smoothing=0.0, patience=100, freeze=[0], save_period=-1, seed=0, local_rank=-1, entity=None, upload_dataset=False, bbox_interval=-1, artifact_alias=latest
github: skipping check (not a git repository), for updates see https://github.com/ultralytics/yolov5
YOLOv5 🚀 2022-11-22 Python-3.8.13 torch-2.0.0+cu117 CPUhyperparameters: lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0
ClearML: run 'pip install clearml' to automatically track, visualize and remotely train YOLOv5 🚀 in ClearML
Comet: run 'pip install comet_ml' to automatically track and visualize YOLOv5 🚀 runs in Comet
TensorBoard: Start with 'tensorboard --logdir runs/train', view at http://localhost:6006/from  n    params  module                                  arguments                     0                -1  1      1760  models.common.Conv                      [3, 16, 6, 2, 2]              1                -1  1      4672  models.common.Conv                      [16, 32, 3, 2]                2                -1  1      4800  models.common.C3                        [32, 32, 1]                   3                -1  1     18560  models.common.Conv                      [32, 64, 3, 2]                4                -1  2     29184  models.common.C3                        [64, 64, 2]                   5                -1  1     73984  models.common.Conv                      [64, 128, 3, 2]               6                -1  3    156928  models.common.C3                        [128, 128, 3]                 7                -1  1    295424  models.common.Conv                      [128, 256, 3, 2]              8                -1  1    296448  models.common.C3                        [256, 256, 1]                 9                -1  1    164608  models.common.SPPF                      [256, 256, 5]                 10                -1  1     33024  models.common.Conv                      [256, 128, 1, 1]              11                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']          12           [-1, 6]  1         0  models.common.Concat                    [1]                           13                -1  1     90880  models.common.C3                        [256, 128, 1, False]          14                -1  1      8320  models.common.Conv                      [128, 64, 1, 1]               15                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']          16           [-1, 4]  1         0  models.common.Concat                    [1]                           17                -1  1     22912  models.common.C3                        [128, 64, 1, False]           18                -1  1     36992  models.common.Conv                      [64, 64, 3, 2]                19          [-1, 14]  1         0  models.common.Concat                    [1]                           20                -1  1     74496  models.common.C3                        [128, 128, 1, False]          21                -1  1    147712  models.common.Conv                      [128, 128, 3, 2]              22          [-1, 10]  1         0  models.common.Concat                    [1]                           23                -1  1    296448  models.common.C3                        [256, 256, 1, False]          24      [17, 20, 23]  1      9471  models.yolo.Detect                      [2, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [64, 128, 256]]
my-YOLOv5n summary: 214 layers, 1766623 parameters, 1766623 gradients, 4.2 GFLOPsTransferred 342/349 items from yolov5n.pt
optimizer: SGD(lr=0.01) with parameter groups 57 weight(decay=0.0), 60 weight(decay=0.0005625000000000001), 60 bias
train: Scanning /home/jason/work/my-datasets/yolov5_train.cache... 2276 images, 0 backgrounds, 0 corrupt: 100%|██████████| 2276/2276 00:00
val: Scanning /home/jason/work/my-datasets/yolov5_val.cache... 568 images, 0 backgrounds, 0 corrupt: 100%|██████████| 568/568 00:00AutoAnchor: 6.38 anchors/target, 1.000 Best Possible Recall (BPR). Current anchors are a good fit to dataset ✅
Plotting labels to runs/train/exp2/labels.jpg... 
Image sizes 640 train, 640 val
Using 8 dataloader workers
Logging results to runs/train/exp2
Starting training for 1 epochs...Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size0/0         0G    0.09858     0.3112    0.01833       1331        640: 100%|██████████| 95/95 10:55Class     Images  Instances          P          R      mAP50   mAP50-95:   0%|          | 0/12 00:00WARNING ⚠️ NMS time limit 2.900s exceededClass     Images  Instances          P          R      mAP50   mAP50-95:   8%|▊         | 1/12 00:08WARNING ⚠️ NMS time limit 2.900s exceededClass     Images  Instances          P          R      mAP50   mAP50-95:  17%|█▋        | 2/12 00:15WARNING ⚠️ NMS time limit 2.900s exceededClass     Images  Instances          P          R      mAP50   mAP50-95:  25%|██▌       | 3/12 00:23WARNING ⚠️ NMS time limit 2.900s exceededClass     Images  Instances          P          R      mAP50   mAP50-95:  33%|███▎      | 4/12 00:30WARNING ⚠️ NMS time limit 2.900s exceededClass     Images  Instances          P          R      mAP50   mAP50-95:  42%|████▏     | 5/12 00:38WARNING ⚠️ NMS time limit 2.900s exceededClass     Images  Instances          P          R      mAP50   mAP50-95:  50%|█████     | 6/12 00:47WARNING ⚠️ NMS time limit 2.900s exceededClass     Images  Instances          P          R      mAP50   mAP50-95:  58%|█████▊    | 7/12 00:54WARNING ⚠️ NMS time limit 2.900s exceededClass     Images  Instances          P          R      mAP50   mAP50-95:  67%|██████▋   | 8/12 01:00WARNING ⚠️ NMS time limit 2.900s exceededClass     Images  Instances          P          R      mAP50   mAP50-95:  75%|███████▌  | 9/12 01:07WARNING ⚠️ NMS time limit 2.900s exceededClass     Images  Instances          P          R      mAP50   mAP50-95:  83%|████████▎ | 10/12 01:14WARNING ⚠️ NMS time limit 2.900s exceededClass     Images  Instances          P          R      mAP50   mAP50-95:  92%|█████████▏| 11/12 01:21WARNING ⚠️ NMS time limit 2.500s exceededClass     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 12/12 01:28all        568      28591      0.613      0.262      0.108     0.03511 epochs completed in 0.207 hours.
Optimizer stripped from runs/train/exp2/weights/last.pt, 3.8MB
Optimizer stripped from runs/train/exp2/weights/best.pt, 3.8MBValidating runs/train/exp2/weights/best.pt...
Fusing layers... 
my-YOLOv5n summary: 157 layers, 1761871 parameters, 0 gradients, 4.1 GFLOPsClass     Images  Instances          P          R      mAP50   mAP50-95:   0%|          | 0/12 00:00WARNING ⚠️ NMS time limit 2.900s exceededClass     Images  Instances          P          R      mAP50   mAP50-95:   8%|▊         | 1/12 00:08WARNING ⚠️ NMS time limit 2.900s exceededClass     Images  Instances          P          R      mAP50   mAP50-95:  17%|█▋        | 2/12 00:44WARNING ⚠️ NMS time limit 2.900s exceededClass     Images  Instances          P          R      mAP50   mAP50-95:  25%|██▌       | 3/12 01:07WARNING ⚠️ NMS time limit 2.900s exceededClass     Images  Instances          P          R      mAP50   mAP50-95:  33%|███▎      | 4/12 01:33WARNING ⚠️ NMS time limit 2.900s exceededClass     Images  Instances          P          R      mAP50   mAP50-95:  42%|████▏     | 5/12 01:42WARNING ⚠️ NMS time limit 2.900s exceededClass     Images  Instances          P          R      mAP50   mAP50-95:  50%|█████     | 6/12 01:49WARNING ⚠️ NMS time limit 2.900s exceededClass     Images  Instances          P          R      mAP50   mAP50-95:  58%|█████▊    | 7/12 01:57WARNING ⚠️ NMS time limit 2.900s exceededClass     Images  Instances          P          R      mAP50   mAP50-95:  67%|██████▋   | 8/12 02:04WARNING ⚠️ NMS time limit 2.900s exceededClass     Images  Instances          P          R      mAP50   mAP50-95:  75%|███████▌  | 9/12 02:10WARNING ⚠️ NMS time limit 2.900s exceededClass     Images  Instances          P          R      mAP50   mAP50-95:  83%|████████▎ | 10/12 02:18WARNING ⚠️ NMS time limit 2.900s exceededClass     Images  Instances          P          R      mAP50   mAP50-95:  92%|█████████▏| 11/12 02:24WARNING ⚠️ NMS time limit 2.500s exceededClass     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 12/12 02:30all        568      28591       0.61      0.228     0.0949     0.0317open        568       2512          1          0    0.00273    0.00136close        568      26079      0.219      0.456      0.187      0.062
Results saved to runs/train/exp2

http://www.zhongyajixie.com/news/28390.html

相关文章:

  • 做二手房销售要开自己的网站吗seo优化工具
  • 怎么做根优酷差不多的网站南宁百度快速优化
  • 网站制作模版公司网页制作需要多少钱
  • 郑州建站时间百度一下首页百度一下知道
  • 网站建设临沂长春关键词优化排名
  • 重庆网站建设培训班磁力王
  • 网站推广的目标是什么网站免费搭建
  • 成都网站空间创新互联周口网站建设公司
  • wordpress网站数据库备份深圳短视频推广
  • 建设银行上海分行社会招聘网站免费com域名申请注册
  • 潍坊做网站的成都网站建设企业
  • 网站推广可采用的方法有哪些制作网站模板
  • 利用海康威视做直播网站成都今天宣布的最新疫情消息
  • 页面访问紧急升级中通知怎么关闭seo运营工作内容
  • 三折页设计那个网站做的好热搜在哪里可以看
  • wordpress手机端响应慢合肥网络公司seo
  • 怎么做游戏推广赚钱北京网络推广优化公司
  • 设计类网站模板怎么建设自己的网站
  • 网站建设与实训网络推广吧
  • 学习做网站多久360优化大师官方版
  • 网站app制作费用单教育机构排名
  • 旅游微网站建设新的数据新闻
  • 博客网站建设方案百度地图关键词排名优化
  • 河南网站建设常用的网络推广方法
  • 交互做的好的网站seo推广收费标准
  • 网站生成app 免费工具公司运营策划营销
  • 印象网站建设建网络平台要多少费用
  • 平面电商网站建设广告优化师发展前景
  • 怎么做优惠卷网站美区下载的app怎么更新
  • 最好网站开发公司电话江苏seo平台