当前位置: 首页 > news >正文

做微商有卖鞋子的网站吗厦门seo起梦网络科技

做微商有卖鞋子的网站吗,厦门seo起梦网络科技,网站建设常州青之峰,wordpress Obiron主题一、层次分析法 概念原理 通过相互比较确定各准则对于目标的权重, 及各方案对于每一准则的权重,这些权重在人的思维过程中通常是定性的, 而在层次分析法中则要给出得到权重的定量方法. 将方案层对准则层的权重及准则层对目标层的权重进行综合, 最终确定方案层对目标…

一、层次分析法

概念原理

        通过相互比较确定各准则对于目标的权重, 及各方案对于每一准则的权重,这些权重在人的思维过程中通常是定性的, 而在层次分析法中则要给出得到权重的定量方法. 将方案层对准则层的权重及准则层对目标层的权重进行综合, 最终确定方案层对目标层的权重。

层次分析算法的基本步骤 

1、建立递阶层次结构模型

2、构造出各层次中的所有判断矩阵

3、一致性检验

4、求权重后进行评价

一致性检验

求解权重 

 例题

例题:某公司计划投资一个新项目,现有三个候选城市A、B、C可供选择。公司希望通过层次分析法来确定最佳投资地点。评价指标包括:经济发展水平、人力资源、基础设施、政策支持四个方面。

步骤1:建立递阶层次结构模型

目标层:选择最佳投资地点 准则层:经济发展水平、人力资源、基础设施、政策支持 方案层:城市A、城市B、城市C

步骤2:构造各层次中的所有判断矩阵

假设公司对四个评价指标的重要性进行了如下判断(1-9标度法):

经济发展水平:人力资源 = 3,基础设施 = 5,政策支持 = 7 人力资源:基础设施 = 2,政策支持 = 4 基础设施:政策支持 = 1

构造准则层判断矩阵P:

对于方案层,假设公司对三个城市在各评价指标下的表现进行了如下判断:

经济发展水平:A > B > C 人力资源:A > C > B 基础设施:B > A > C 政策支持:C > A > B

构造方案层判断矩阵Q1(经济发展水平):

构造方案层判断矩阵Q2(人力资源):

构造方案层判断矩阵Q3(基础设施):

构造方案层判断矩阵Q4(政策支持):

步骤3:一致性检验

首先计算判断矩阵的最大特征值和特征向量,然后计算一致性指标CI和一致性比例CR。

步骤4:求权重后进行评价

根据步骤3的计算结果,得到各评价指标和方案的权重,进而计算出各方案的综合得分,选择得分最高的方案。

import numpy as np# 计算最大特征值和特征向量
def cal_maxEigenvalue_and_Eigenvector(matrix):eigenvalues, eigenvectors = np.linalg.eig(matrix)max_index = np.argmax(eigenvalues)max_eigenvalue = eigenvalues[max_index]max_eigenvector = eigenvectors[:, max_index]return max_eigenvalue, max_eigenvector# 一致性检验
def consistency_check(matrix, n):max_eigenvalue, max_eigenvector = cal_maxEigenvalue_and_Eigenvector(matrix)CI = (max_eigenvalue - n) / (n - 1)RI = [0, 0, 0.58, 0.9, 1.12, 1.24, 1.32, 1.41, 1.45]  # 随机一致性指标CR = CI / RI[n - 1]if CR < 0.1:print("判断矩阵的一致性可以接受,CR = {:.4f}".format(CR))return max_eigenvector / np.sum(max_eigenvector)  # 归一化特征向量else:print("判断矩阵的一致性不可接受,CR = {:.4f}".format(CR))return None# 构造判断矩阵
P = np.array([[1, 1/3, 1/5, 1/7],[3, 1, 1/2, 1/4],[5, 2, 1, 1/3],[7, 4, 3, 1]])Q1 = np.array([[1, 3, 5],[1/3, 1, 3],[1/5, 1/3, 1]])Q2 = np.array([[1, 3, 5],[1/3, 1, 3],[1/5, 1/3, 1]])Q3 = np.array([[1, 1/3, 1/5],[3, 1, 3],[5, 1/3, 1]])Q4 = np.array([[1, 1/3, 1/5],[3, 1, 3],[5, 1/3, 1]])# 进行一致性检验并计算权重
weights_P = consistency_check(P, 4)
weights_Q1 = consistency_check(Q1, 3)
weights_Q2 = consistency_check(Q2, 3)
weights_Q3 = consistency_check(Q3, 3)
weights_Q4 = consistency_check(Q4, 3)# 如果一致性检验未通过,则无法继续计算
if weights_P is None or weights_Q1 is None or weights_Q2 is None or weights_Q3 is None or weights_Q4 is None:print("存在判断矩阵的一致性不可接受,请重新评估。")
else:# 计算各方案的综合得分scores = np.dot(weights_P, np.array([weights_Q1, weights_Q2, weights_Q3, weights_Q4]))print("各城市的综合得分:")for i, score in enumerate(scores):print("城市{}:{:.4f}".format(chr(65+i), score))# 选择得分最高的城市best_city_index = np.argmax(scores)print("最佳投资地点是:城市{}".format(chr(65+best_city_index)))

请注意,这段代码假设所有的判断矩阵都通过了一致性检验。在实际应用中,如果任何一个判断矩阵没有通过一致性检验,就需要重新评估矩阵中的元素,直到所有矩阵都通过一致性检验。

此外,代码中的RI数组是一个预定义的随机一致性指标,它依赖于矩阵的大小(即准则的数量)。如果准则层或方案层的元素数量超过9,那么需要查找额外的RI值。

运行上述代码将给出每个城市的综合得分,并确定最佳投资地点。这个过程体现了层次分析法的核心步骤,包括建立模型、构造判断矩阵、一致性检验和权重计算。

二、Topsis算法

模型原理

基本步骤

原始矩阵正向化

正向化矩阵标准化 

 计算得分并归一化

 例题

假设某公司需要从三个供应商(A、B、C)中选择一个作为长期合作伙伴。评价指标包括:价格、质量、交货时间和售后服务。以下是供应商在每个指标上的原始评分(价格越低越好,其他指标越高越好):

首先,我们将价格指标正向化,因为价格是成本型指标,越低越好,而其他指标是效益型指标,越高越好。

正向化后的矩阵X’:

X' = [[1/10, 85, 3, 90],[1/12, 90, 5, 85],[1/11, 88, 4, 88]]

对正向化后的矩阵进行标准化处理,得到标准化矩阵R。

X_prime = np.array([[1/10, 85, 3, 90],[1/12, 90, 5, 85],[1/11, 88, 4, 88]])# 计算每列的平方和
squared_sums = np.sum(X_prime**2, axis=0)# 标准化矩阵R
R = X_prime / np.sqrt(squared_sums)

假设每个指标的权重相等,即每个指标的权重为1/4。

# 权重向量W
W = np.array([1/4, 1/4, 1/4, 1/4])# 计算加权得分
V = R * W

归一化得分:

# 计算得分向量V的平方和
v_squared_sums = np.sum(V**2, axis=1)# 归一化得分
S = V / np.sqrt(v_squared_sums)[:, np.newaxis]

 完整代码:

import numpy as np# 原始矩阵正向化
X_prime = np.array([[1/10, 85, 3, 90],[1/12, 90, 5, 85],[1/11, 88, 4, 88]])# 标准化矩阵R
squared_sums = np.sum(X_prime**2, axis=0)
R = X_prime / np.sqrt(squared_sums)# 权重向量W
W = np.array([1/4, 1/4, 1/4, 1/4])# 计算加权得分
V = R * W# 归一化得分
v_squared_sums = np.sum(V**2, axis=1)
S = V / np.sqrt(v_squared_sums)[:, np.newaxis]# 输出归一化得分
print("各供应商的归一化得分:")
for i, s in enumerate(S):print(f"供应商 {chr(65+i)}: {s}")

http://www.zhongyajixie.com/news/27978.html

相关文章:

  • asp开源政府网站seo外包网站
  • 动态网站开发大赛百度优化软件
  • 百度做网站续费费用实时seo排名点击软件
  • 抖音代运营ppt搜索引擎营销优化
  • 北京网站建设设计比较开放的浏览器
  • 网站开发存在的风险通州优化公司
  • 做网站建设网站制作四川seo整站优化吧
  • 网站建设湛江网站推广的概念
  • 网站建设主要研究内容全国疫情突然又严重了
  • 小型教育网站的开发与建设系统网站检测
  • 怎样做古玩网站品牌营销的四大策略
  • 网站怎么做流量搜索引擎优化的策略主要有
  • 网站的链接要怎么做培训心得体会范文大全1000
  • 四川九江龙钢结构网架公司seo网站推广软件排名
  • 网站公安局备案 所需要的材料公司产品推广方案
  • 广东省城乡建设和管理委员会网站服务器域名怎么注册
  • 湖南门户网站设计公司百度指数怎么用
  • 网站建设注册小程序百度网盘下载速度
  • 网站建设与实现毕业答辩ppt网站底部友情链接
  • 正规网站建设首选公司西安seo排名收费
  • 深圳靠谱网站建设公司百度没有排名的点击软件
  • wordpress php那个版本网店seo名词解释
  • 北京vi设计哪家公司好网站google搜索优化
  • 中国形象设计网网站建设公司seo关键词
  • 新乡做网站公百度推广获客成本大概多少
  • 聊城网站策划小程序开发平台
  • 微网站定制营销网站大全
  • 最高人民法院建工解释一郑州抖音seo
  • 制作网站 美工网店运营在哪里学比较好些
  • 群晖wordpress主题seo智能优化公司