当前位置: 首页 > news >正文

怎么做局域网asp网站网络营销工资一般多少

怎么做局域网asp网站,网络营销工资一般多少,golang 网站开发 教程,网站建设公司优惠大酬宾活动说明:该系列文章从本人知乎账号迁入,主要原因是知乎图片附件过于模糊。 知乎专栏地址: 语音生成专栏 系列文章地址: 【GPT-SOVITS-01】源码梳理 【GPT-SOVITS-02】GPT模块解析 【GPT-SOVITS-03】SOVITS 模块-生成模型解析 【G…

说明:该系列文章从本人知乎账号迁入,主要原因是知乎图片附件过于模糊。

知乎专栏地址:
语音生成专栏

系列文章地址:
【GPT-SOVITS-01】源码梳理
【GPT-SOVITS-02】GPT模块解析
【GPT-SOVITS-03】SOVITS 模块-生成模型解析
【GPT-SOVITS-04】SOVITS 模块-鉴别模型解析
【GPT-SOVITS-05】SOVITS 模块-残差量化解析
【GPT-SOVITS-06】特征工程-HuBert原理

1.概述

SOVIT 模块的主要功能是生成最终的音频文件。

GPT-SOVITS的核心与SOVITS差别不大,仍然是分了两个部分:

  • 基于 VAE + FLOW 的生成器,源代码为 SynthesizerTrn
  • 基于多尺度分类器的鉴别器,源代码为 SynthesizerTrn

针对鉴别器相较于SOVITS5做了一些简化,主要的差异是在在生成模型处引入了残差量化层。

在训练时进入先验编码器的是经过残差量化层的 quatized 数据。

在推理时,用的是AR模块推理出的 code,然后用code直接生成 quatized 数据,再进入先验编码器。

训练所涉及特征包括:
在这里插入图片描述

2.训练流程

在这里插入图片描述

  • 如概述所注,在训练时SSL特征经过残差量化层中会产生量化编码 code 和数据 quatized。
  • 这个 code 也会作为 AR,即GPT模块训练的特征
  • 在推理时,这个code 就由 GPT 模块生成
  • 损失函数如下:
y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat)
with autocast(enabled=False):loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_melloss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_klloss_fm = feature_loss(fmap_r, fmap_g)loss_gen, losses_gen = generator_loss(y_d_hat_g)loss_gen_all = loss_gen + loss_fm + loss_mel + kl_ssl * 1 + loss_kl

3.推理流程

在这里插入图片描述
推理时直接通过先验编码器,通过FLOW的逆,进入解码器后输出推理音频

4.调试代码参考

import os,sys
import json
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from torch.utils.data import DataLoaderfrom vof.vits.data_utils import (TextAudioSpeakerLoader,TextAudioSpeakerCollate,DistributedBucketSampler,
)
from vof.vits.models import SynthesizerTrn
from vof.script.utils import HParamsnow_dir   = os.getcwd()
root_dir  = os.path.dirname(now_dir)
prj_name  = 'project01'               # 项目名称
prj_dir   = root_dir + '/res/' + prj_name + '/'with open(root_dir + '/res/configs/s2.json') as f:data = f.read()data = json.loads(data)# 新增其他参数
s2_dir = prj_dir + 'logs'  # gpt 训练用目录
os.makedirs("%s/logs_s2" % (s2_dir), exist_ok=True)data["train"]["batch_size"]             = 3
data["train"]["epochs"]                 = 15
data["train"]["text_low_lr_rate"]       = 0.4
data["train"]["pretrained_s2G"]         = root_dir + '/res/pretrained_models/s2G488k.pth'
data["train"]["pretrained_s2D"]         = root_dir + '/res/pretrained_models/s2D488k.pth'
data["train"]["if_save_latest"]         = True
data["train"]["if_save_every_weights"]  = True
data["train"]["save_every_epoch"]       = 5
data["train"]["gpu_numbers"]            = 0
data["data"]["exp_dir"]                 = data["s2_ckpt_dir"] = s2_dir
data["save_weight_dir"]                 = root_dir + '/res/weight/sovits'
data["name"]                            = prj_name
data['exp_dir']                         = s2_dirhps = HParams(**data)
print(hps)
"""
self.path2 = "%s/2-name2text-0.txt" % exp_dir
self.path4 = "%s/4-cnhubert" % exp_dir
self.path5 = "%s/5-wav32k" % exp_dir
"""
train_dataset = TextAudioSpeakerLoader(hps.data)
"""
ssl  hubert 特征 [1,768,195]
spec [1025,195]
wav  [1,124800]
text [14,]
"""
train_sampler = DistributedBucketSampler(train_dataset,hps.train.batch_size,[32,300,400,500,600,700,800,900,1000,1100,1200,1300,1400,1500,1600,1700,1800,1900,],num_replicas=1,rank=0,shuffle=True,
)
collate_fn = TextAudioSpeakerCollate()
train_loader = DataLoader(train_dataset,batch_size=1,shuffle=False,pin_memory=True,collate_fn=collate_fn,batch_sampler=train_sampler
)def _model_forward(ssl, y, y_lengths, text, text_lengths):net_g = SynthesizerTrn(hps.data.filter_length // 2 + 1,hps.train.segment_size // hps.data.hop_length,n_speakers=hps.data.n_speakers,**hps.model,)net_g.forward(ssl, y, y_lengths, text, text_lengths)for data in train_loader:ssl_padded   = data[0]ssl_lengths  = data[1]spec_padded  = data[2]spec_lengths = data[3]wav_padded   = data[4]wav_lengths  = data[5]text_padded  = data[6]text_lengths = data[7]_model_forward(ssl_padded, spec_padded, spec_lengths, text_padded, text_lengths)
http://www.zhongyajixie.com/news/2751.html

相关文章:

  • 淳安县住房和城乡建设局网站首页网络营销的主要手段
  • 赣州网站建设优化服务广州网站推广
  • 做网站保存什么格式最好购买seo关键词排名优化官网
  • 鸿蒙开发语言苏州优化收费
  • wordpress 过滤 特色图像seo外包服务专家
  • 天津网站建设制作排名google推广公司哪家好
  • 做翻译小说网站赚钱吗免费com域名注册网站
  • 福州网站建设服务外贸网站推广方式
  • 卢湾做网站公司seo查询
  • 设计网网站seo网络推广专员招聘
  • 旅游网站的市场需求怎么做介绍湖南中高风险地区
  • 湖南网站模板建站百度热搜关键词排行榜
  • 淘宝客如何做网站百度一下网页版浏览器百度
  • 自己的网站怎么编辑微信朋友圈广告30元 1000次
  • 电商网站建设新闻计算机培训班培训费用
  • 网站seo内链建设大数据营销的案例
  • 小鱼赚钱网站能重复做任务吗真正永久免费网站建设
  • 网站后台管理界面模板微信广告怎么投放
  • 罗湖住房和建设局网站怎么在网上做推广
  • 大连中山网站建设谷歌seo搜索优化
  • 网站做支付宝接口吗网络营销推广方法有哪些
  • 网站pv是什么百度一下你就知道网页
  • 广告设计制作发布seo网站排名优化服务
  • 可信网站认证的区别信息发布平台推广
  • 视频网站会员系统怎么做网站优化关键词
  • 网站地图深度做多少合适网络工程师培训一般多少钱
  • 网站建设合作分成合同成都关键词优化排名
  • 部分网站dns解析失败商铺营销推广方案
  • vs可以做网站吗网站专业术语中seo意思是
  • 猪八戒网站怎么做任务如何在互联网上做推广