当前位置: 首页 > news >正文

鹤壁做网站价格竞价

鹤壁做网站价格,竞价,泗水做网站,wordpress 自定义css1 数组的形状变换 NumPy 提供了多种方法来改变数组的形状。这些方法不会改变数组的内容,而是重新组织数据的排列方式。 1.1 reshape() 函数 reshape() 是最常用的形状变换函数,它可以改变数组的形状,前提是变换后的总元素数量与原数组一致…
1 数组的形状变换

NumPy 提供了多种方法来改变数组的形状。这些方法不会改变数组的内容,而是重新组织数据的排列方式。

1.1 reshape() 函数

reshape() 是最常用的形状变换函数,它可以改变数组的形状,前提是变换后的总元素数量与原数组一致。

import numpy as np# 创建一个一维数组
arr = np.arange(12)# 将一维数组变换为 3x4 的二维数组
reshaped_arr = arr.reshape(3, 4)print("原数组:", arr)
print("变换后的数组:\n", reshaped_arr)

注意: 如果变换后的维度不能满足元素总数要求,reshape() 会抛出错误。

1.2 ravel() 函数

ravel() 可以将多维数组展平为一维数组,返回的是原数组的视图,修改展平后的数组也会影响原数组。

# 展平二维数组
flattened_arr = reshaped_arr.ravel()
print("展平后的数组:", flattened_arr)
1.3 transpose() 函数

transpose() 用于对多维数组进行转置操作,交换其维度。对于二维数组,转置会将行和列互换。

# 对二维数组进行转置
transposed_arr = reshaped_arr.transpose()
print("转置后的数组:\n", transposed_arr)
1.4 resize() 函数

resize()reshape() 类似,但不同的是,resize() 会直接修改原数组,并且在调整数组大小时,会自动填充或截取数据。

# 使用 resize 改变数组大小
reshaped_arr.resize(2, 6)
print("使用 resize 改变后的数组:\n", reshaped_arr)

2 数组的合并与分割

NumPy 提供了方便的数组合并与分割操作,可以灵活处理数据的拼接与拆分。

2.1 数组的合并

水平合并(hstack)垂直合并(vstack) 是最常见的数组合并操作,用于将多个数组沿着不同轴合并。

# 创建两个数组
arr1 = np.array([[1, 2], [3, 4]])
arr2 = np.array([[5, 6], [7, 8]])# 水平合并
hstack_arr = np.hstack((arr1, arr2))
print("水平合并后的数组:\n", hstack_arr)# 垂直合并
vstack_arr = np.vstack((arr1, arr2))
print("垂直合并后的数组:\n", vstack_arr)
2.2 数组的分割

NumPy 提供了 split() 函数,可以将数组按照指定的规则进行分割。

# 创建一个数组
arr = np.arange(16).reshape(4, 4)# 按行分割为两个数组
split_arr = np.split(arr, 2, axis=0)
print("按行分割的数组:\n", split_arr)# 按列分割为两个数组
split_arr_col = np.split(arr, 2, axis=1)
print("按列分割的数组:\n", split_arr_col)

3 数组的排序与搜索

排序和搜索操作在数据分析中非常常用。NumPy 提供了多种方法来对数组进行排序、筛选和搜索。

3.1 数组排序

sort() 函数可以对数组进行排序,支持对一维数组、二维数组进行排序,并且可以指定沿哪个轴进行排序。

# 创建一个随机数组
arr = np.random.randint(1, 100, size=(4, 4))# 对数组进行排序(默认沿最后一个轴)
sorted_arr = np.sort(arr)print("原数组:\n", arr)
print("排序后的数组:\n", sorted_arr)

可以使用 axis 参数指定沿哪个维度进行排序:

# 沿着行排序
sorted_arr_row = np.sort(arr, axis=1)
print("按行排序后的数组:\n", sorted_arr_row)# 沿着列排序
sorted_arr_col = np.sort(arr, axis=0)
print("按列排序后的数组:\n", sorted_arr_col)
3.2 数组的搜索

argmax()argmin() 函数用于查找数组中最大值或最小值的索引,where() 函数则可以用于根据条件查找满足条件的元素。

# 查找数组中最大值和最小值的位置
max_index = np.argmax(arr)
min_index = np.argmin(arr)print("最大值的位置:", max_index)
print("最小值的位置:", min_index)# 使用 where 查找数组中大于 50 的元素
condition = np.where(arr > 50)
print("数组中大于 50 的元素索引:", condition)
3.3 argsort() 函数

argsort() 返回的是排序后的索引值,而不是排序后的数组本身。这在需要保留原数组顺序的同时对索引进行操作时非常有用。

# 创建一个随机数组
arr = np.array([42, 12, 19, 33])# 使用 argsort 获取排序后的索引
sorted_index = np.argsort(arr)
print("排序后的索引:", sorted_index)# 使用排序后的索引访问原数组
sorted_arr = arr[sorted_index]
print("按索引排序后的数组:", sorted_arr)

4 数组的去重与重复

NumPy 提供了去重和生成重复数据的功能,这在数据预处理和特征工程中非常常见。

1 数组去重

unique() 函数用于对数组进行去重,返回的是去重后的数组。

# 创建一个包含重复元素的数组
arr = np.array([1, 2, 2, 3, 4, 4, 5])# 使用 unique 函数去重
unique_arr = np.unique(arr)
print("去重后的数组:", unique_arr)
2 数组的重复

tile()repeat() 函数可以用于生成重复数据。

# 使用 repeat 函数重复每个元素 2 次
repeat_arr = np.repeat(arr, 2)
print("重复后的数组:", repeat_arr)# 使用 tile 函数将整个数组重复 2 次
tile_arr = np.tile(arr, 2)
print("数组重复后的结果:", tile_arr)

http://www.zhongyajixie.com/news/26750.html

相关文章:

  • 校园微网站建设方案百家号排名
  • 搭建网站用什么语言关键词优化一年多少钱
  • 网站建设与推广合肥邵阳seo排名
  • aspnet网站开发南京seo排名优化
  • 自助建站系统源源码市场调研报告总结
  • 安庆网站建设电话seo是指搜索引擎优化
  • 网站备案需要的资料石家庄市人民政府官网
  • 织梦 电影网站 模板建网站需要什么
  • 老鹰主机做的网站线上培训
  • 网站规划的原则有网页设计与制作软件有哪些
  • oa系统网站建设方案十大小说网站排名
  • 公司网站做的好的网络销售管理条例
  • 电子商务网站建设的背景惠州百度seo在哪
  • 网站开发名片企业营销平台
  • 有保障的广州网站建设登封网络推广
  • 企业邮箱注册域名武汉seo技术
  • 企业网站建设常见问题百度的电话人工客服电话
  • 网站推广合同模板湖南优化公司
  • 青岛网站建设百度帐号申请注册
  • 黑龙江建设网官方网站特种作业证北京seo公司华网白帽
  • 环保网站 怎么做站内营销推广方式
  • beego框架做的网站seo案例分析
  • 关于做一动物网站的界面个发布软文的平台有哪些
  • 哈尔滨优化网站方法收录网
  • 网页制作个人简介页面模板排名优化网站建设
  • 旅游分析 网站谷歌推广优化
  • 可以免费建立网站吗关键词语有哪些
  • wordpress连接微博 破解aso关键词排名优化是什么
  • 网站建设专业公司哪家好产品软文范例500字
  • 做网站广告公司百度贴吧网页版