当前位置: 首页 > news >正文

做网站要注意哪些百度推广找谁做靠谱

做网站要注意哪些,百度推广找谁做靠谱,好牛网站建设,做标书有哪些网站能接到1. 模型转换 ONNX Runtime 是一个开源的高性能推理引擎,用于部署和运行机器学习模型,其设计的目标是优化执行open neural network exchange (onnx)格式定义各模型,onnx是一种用于表示机器学习模型的开放标准。ONNX Ru…

1. 模型转换

ONNX Runtime 是一个开源的高性能推理引擎,用于部署和运行机器学习模型,其设计的目标是优化执行open neural network exchange (onnx)格式定义各模型,onnx是一种用于表示机器学习模型的开放标准。ONNX Runtime提供了几个关键功能和优势:

a. 跨平台兼容性:ONNX Runtime 旨在与各种硬件与操作系统平台兼容,主要包括Windows、Linux及各种加速器,如CPU、GPU和FPGA,使得能够轻松在不同环境中部署和运行机器学习模型。

b. 高性能:ONNX Runtime 经过性能优化,能够提供高效的模型计算,而且针对不同的平台提供了对应的优化模式。

c. 多框架支持:ONNX Runtime 可以与使用不同的机器学习框架创建的模型一起使用,包括Pytorch、Tensorflow等。

d. 模型转换:ONNX Runtime 可以将所支持的框架模型转换为onnx格式,从而更容易在各种场景中部署。

e. 多语言支持:ONNX Runtime 可用多种编程语言,包括C++、C#、Python等,使其能够适用于不同语言的开发场景。

f. 自定义运算符:ONNX Runtime 支持自定义运算符,允许开发人员扩展其功能以支持特定操作或硬件加速。

ONNX Runtime广泛用于各种机器学习应用的生产部署,包括计算机视觉、自然语言处理等。它由ONNX社区积极维护,并持续接受更新和改进。

2. pt模型与onnx模型区别

pt模型和onnx模型均为常用的表示机器学习模型的文件格式,主要区别体现在:

a. 文件格式:

pt模型:Pytorch框架的权重文件格式,通常保存为.pt或.pth扩展名保存,包含了模型的权重参数及模型结构的定义。

onnx模型:ONNX格式的模型文件,通常以.onnx扩展名保存,onnx文件是一种中性表示格式,独立于任何特定的深度学习框架,用于跨不同框架之间的模型转换和部署。

b. 框架依赖:

pt模型:依赖于Pytorch框架,在加载和运行时需要使用Pytorch库,限制了此类模型在不同框架中的直接使用。

onnx模型:ONNX模型独立于深度学习框架,可以在支持ONNX的不同框架中加载和运行,如Tensorflow、Caffe2及ONNX Runtime等。

c. 跨平台兼容性:

pt模型:需要在不同平台上进行Pytorch的兼容性配置,需要额外的工作和依赖处理。

onnx模型:ONNX模型的独立性使其更容易在不同平台和硬件上部署,无需担心框架依赖性问题。

3. yolov8 pt模型转换为onnx

要在不同框架或平台中部署训练的pt模型,需要利用ONNX转换工具将pt模型转换为ONNX格式。

from ultralytics import YOLO% load model
model = YOLO('yolov8m.pt')% expert model
success = model.expert(format="onnx")

4. 构建推理模型

a. 环境配置

onnx模型推理只依赖于onnxruntime库,图像处理依赖opencv,需要安装此两个库。

pip3 install onnxruntime
pip3 install opencv-python
pip3 install numpy
pip3 install gradio

b. 部署代码

utils.py

import numpy as np
import cv2class_names = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light','fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow','elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee','skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard','tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple','sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch','potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard','cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase','scissors', 'teddy bear', 'hair drier', 'toothbrush']# Create a list of colors for each class where each color is a tuple of 3 integer values
rng = np.random.default_rng(3)
colors = rng.uniform(0, 255, size=(len(class_names), 3))def nms(boxes, scores, iou_threshold):# Sort by scoresorted_indices = np.argsort(scores)[::-1]keep_boxes = []while sorted_indices.size > 0:# Pick the last boxbox_id = sorted_indices[0]keep_boxes.append(box_id)# Compute IoU of the picked box with the restious = compute_iou(boxes[box_id, :], boxes[sorted_indices[1:], :])# Remove boxes with IoU over the thresholdkeep_indices = np.where(ious < iou_threshold)[0]# print(keep_indices.shape, sorted_indices.shape)sorted_indices = sorted_indices[keep_indices + 1]return keep_boxesdef multiclass_nms(boxes, scores, class_ids, iou_threshold):unique_class_ids = np.unique(class_ids)keep_boxes = []for class_id in unique_class_ids:class_indices = np.where(class_ids == class_id)[0]class_boxes = boxes[class_indices,:]class_scores = scores[class_indices]class_keep_boxes = nms(class_boxes, class_scores, iou_threshold)keep_boxes.extend(class_indices[class_keep_boxes])return keep_boxesdef compute_iou(box, boxes):# Compute xmin, ymin, xmax, ymax for both boxesxmin = np.maximum(box[0], boxes[:, 0])ymin = np.maximum(box[1], boxes[:, 1])xmax = np.minimum(box[2], boxes[:, 2])ymax = np.minimum(box[3], boxes[:, 3])# Compute intersection areaintersection_area = np.maximum(0, xmax - xmin) * np.maximum(0, ymax - ymin)# Compute union areabox_area = (box[2] - box[0]) * (box[3] - box[1])boxes_area = (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])union_area = box_area + boxes_area - intersection_area# Compute IoUiou = intersection_area / union_areareturn ioudef xywh2xyxy(x):# Convert bounding box (x, y, w, h) to bounding box (x1, y1, x2, y2)y = np.copy(x)y[..., 0] = x[..., 0] - x[..., 2] / 2y[..., 1] = x[..., 1] - x[..., 3] / 2y[..., 2] = x[..., 0] + x[..., 2] / 2y[..., 3] = x[..., 1] + x[..., 3] / 2return ydef draw_detections(image, boxes, scores, class_ids, mask_alpha=0.3):det_img = image.copy()img_height, img_width = image.shape[:2]font_size = min([img_height, img_width]) * 0.0006text_thickness = int(min([img_height, img_width]) * 0.001)det_img = draw_masks(det_img, boxes, class_ids, mask_alpha)# Draw bounding boxes and labels of detectionsfor class_id, box, score in zip(class_ids, boxes, scores):color = colors[class_id]draw_box(det_img, box, color)label = class_names[class_id]caption = f'{label} {int(score * 100)}%'draw_text(det_img, caption, box, color, font_size, text_thickness)return det_imgdef detections_dog(image, boxes, scores, class_ids, mask_alpha=0.3):det_img = image.copy()img_height, img_width = image.shape[:2]font_size = min([img_height, img_width]) * 0.0006text_thickness = int(min([img_height, img_width]) * 0.001)# det_img = draw_masks(det_img, boxes, class_ids, mask_alpha)# Draw bounding boxes and labels of detectionsfor class_id, box, score in zip(class_ids, boxes, scores):color = colors[class_id]draw_box(det_img, box, color)label = class_names[class_id]caption = f'{label} {int(score * 100)}%'draw_text(det_img, caption, box, color, font_size, text_thickness)return det_imgdef draw_box( image: np.ndarray, box: np.ndarray, color: tuple[int, int, int] = (0, 0, 255),thickness: int = 2) -> np.ndarray:x1, y1, x2, y2 = box.astype(int)return cv2.rectangle(image, (x1, y1), (x2, y2), color, thickness)def draw_text(image: np.ndarray, text: str, box: np.ndarray, color: tuple[int, int, int] = (0, 0, 255),font_size: float = 0.001, text_thickness: int = 2) -> np.ndarray:x1, y1, x2, y2 = box.astype(int)(tw, th), _ = cv2.getTextSize(text=text, fontFace=cv2.FONT_HERSHEY_SIMPLEX,fontScale=font_size, thickness=text_thickness)th = int(th * 1.2)cv2.rectangle(image, (x1, y1),(x1 + tw, y1 - th), color, -1)return cv2.putText(image, text, (x1, y1), cv2.FONT_HERSHEY_SIMPLEX, font_size, (255, 255, 255), text_thickness, cv2.LINE_AA)def draw_masks(image: np.ndarray, boxes: np.ndarray, classes: np.ndarray, mask_alpha: float = 0.3) -> np.ndarray:mask_img = image.copy()# Draw bounding boxes and labels of detectionsfor box, class_id in zip(boxes, classes):color = colors[class_id]x1, y1, x2, y2 = box.astype(int)# Draw fill rectangle in mask imagecv2.rectangle(mask_img, (x1, y1), (x2, y2), color, -1)return cv2.addWeighted(mask_img, mask_alpha, image, 1 - mask_alpha, 0)

YOLODet.py

import time
import cv2
import numpy as np
import onnxruntimefrom detection.utils import xyw2xyxy, draw_detections, multiclass_nms, detections_dogclass YOLODet:def __init__(self, path, conf_thresh=0.7, iou_thresh=0.5):self.conf_threshold = conf_threshself.iou_threshold = iou_thresh# Initialize modelself.initialize_model(path)def __call__(self, image):return self.detect_objects(image)def initialize_model(self, path):self.session = onnxruntime.InferenceSession(path, providers=onnxruntime.get_available_providers())# Get model infoself.get_input_details()self.get_output_details()def detect_objects(self, image):input_tensor = self.prepare_input(image)# perform inference on the imageoutputs = self.inference(input_tensor)self.boxes, self.scores, self.class_ids = self.process_output(outputs)return self.boxes. self.scores, self.class_idsdef prepare_input(self, image):self.img_height, self.img_width = img.shape[:2]input_img = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)# resize input imageinput_img = cv2.resize(input_img, (self.input_width, self.input_height))# scale input pixel values to 0 to 1input_img = input_img / 255.0input_img = input_img.transpose(2, 0, 1)input_tensor = input_img[np.newaxis, :, :, :].astype(np.float32)return input_tensordef inference(self, input_tensor):start = time.perf_counter()outputs = self.session.run(self.output_names, {self.input_names[0]: input_tensor})# printf(f"inference time: {(time.perf_counter() - start)*1000:.2f} ms")return outputsdef process_output(self, output):predictions = np.squeeze(output[0]).T# filter out object confidence scores below thresholdscores = np.max(predictions[:,4:], axis=1)predictions = predictions[scores > self.conf_threshold, :]scores = scores[scores > self.conf_threshold]if len(scores) == 0:return [], [], []# get the class with the highest confidenceclass_ids = np.argmax(predictions[:,4:], axis=1)# get bounding boxes for each objectboxes = self.extract_boxes(predictions)# apply non-maxima suppression to suppress weak, overlapping bounding boxes# indices = nms(boxes, scores, class_ids, self.iou_threshold)return boxes[indices], scores[indices], class_ids[indices]def extract_boxes(self, predictions):# extract boxes from predictionsboxes = predictions[:,:4]# scale boxes to original image dimensionsboxes = self.rescale_boxes(boxes)# convert boxes to xyxy fromatboxes = xyw2xyxy(boxes)return boxesdef rescale_boxes(self, boxes):# rescale boxes to original image dimensionsinput_shape = np.array([self.input_width, self.input_height, self.input_width, self.input_height])boxes = np.divide(boxes, input_shape, dtype=np.float32)boxes *= np.array([self.img_width, self.img_height, self.img_width, self.img_height])return boxesdef draw_detection(self, image, draw_scores=True, mask_alpha=0.4):return detection_dog(image, self.boxes, self.scores, self.class_ids, mask_alpha)def get_input_details(self):model_inputs = self.session.get_inputs()self.input_names = [model_inputs[i].name for i in range(len(model_inputs))]self.input_shape = model_inputs[0].shapeself.input_height = self.input_shape[2]self.input_width = self.input_shape[3]def get_output_details(self):model_outputs = self.session.get_outputs()self.output_names = [model_output[i].name for i in range(len(model_outputs))]

5. 测试模型

图像测试

import cv2
import numpy as np
from detection import YOLODet
import gradio as grmodel = 'yolov8m.onnx'
yolo_det = YOLODet(model, conf_thresh=0.5, iou_thresh=0.3)def det_img(cv_src):yolo_det(cv_src)cv_dst = yolo_det.draw_detections(cv_src)return cv_dstif __name__ == '__main__':input = gr.Image()output = gr.Image()demo = gr.Interface(fn=det_img, inputs=input, outputs=output)demo.launch()

视频推理

def detectio_video(input_path, model_path, output_path):cap = cv2.VideoCapture(input_path)fps = int(cap.get(5))t = int(1000 / fps)videoWriter = Nonedet = YOLODet(model_path, conf_thresh=0.3, iou_thresh=0.5)while True:# try_, img = cap.read()if img is None:breakdet(img)cv_dst = det.draw_detections(img)if videoWriter is None:fourcc = cv2.VideoWriter_fourcc('m','p','4','v')videoWriter = cv2.VideoWriter(output_path, fourcc, fps, (cv_dst.shape[1], cv_dst.shape[0]))cv2.imshow("detection", cv_dst)cv2.waitKey(t)if cv2.getWindowProperty("detection", cv2.WND_PROP_AUTOSIZE) < 1:breakcap.release()videoWriter.release()cv2.destroyAllWindows()

http://www.zhongyajixie.com/news/25919.html

相关文章:

  • 网站开发公司哪里寻找客源北京seo公司哪家好
  • 用wordpress仿一个网站旺道智能seo系统
  • 济南网站建设公关键词推广哪家好
  • 一键生成100个原创视频天津seo技术教程
  • 电子商务网站建设与管理实训内容答案企业网站设计毕业论文
  • 温州政府网站建设网站建设介绍ppt
  • 马鞍山做网站bt磁力兔子引擎
  • 学生网站模板株洲seo优化哪家好
  • 网站 工商备案seo关键词排行优化教程
  • 电商个人网站建设全网seo
  • 怎么做全息网站seo自动优化软件下载
  • 网站的页面布局是什么哈尔滨优化推广公司
  • 云南省安宁市建设厅官方网站西地那非片多少钱一盒
  • 旅游网站模板免费下载长春seo顾问
  • 北京网站制作建设公司优化百度seo技术搜索引擎
  • 哪些做营销型网站做的好seo推广专员
  • 温州 网站建设seo伪原创工具
  • 临时网站搭建9个广州seo推广神技
  • 如何做二级网站网时代教育培训机构官网
  • 网站开发学校有哪些seo网络优化软件
  • 哪些公司的网站做的漂亮百度搜图
  • 做一家开发网站的公司简介简单的网站制作
  • 澄迈网站新闻建设推文关键词生成器
  • 四川网站开发制作微信视频号可以推广吗
  • 培训网站建设方案模板下载百度软件市场
  • 自学网站建设工资乐陵seo外包
  • 北京app网站建设谷歌chrome浏览器
  • 个人免费域名空间建站百度排名服务
  • 学校校园网站建设服务舆情信息
  • 新手搭建网站教程关键词查网址