当前位置: 首页 > news >正文

做电脑回收什么网站好湖南网站seo公司

做电脑回收什么网站好,湖南网站seo公司,石碣做网站优化,安岳建设局网站参考资料:https: // blog.csdn.net / shelgi / article / details / 126908418 ————通过下面这个例子,终于能理解一点模糊理论的应用了,感谢原作。 熟悉简单的skfuzzy构建接近生活事件的模糊控制器 假设下面这样的场景, 我们希望构建一套…
参考资料:https: // blog.csdn.net / shelgi / article / details / 126908418
————通过下面这个例子,终于能理解一点模糊理论的应用了,感谢原作。
熟悉简单的skfuzzy构建接近生活事件的模糊控制器
假设下面这样的场景, 我们希望构建一套模糊控制系统, 通过室外温度和风的大小来判断穿几件衣服
室外温度的范围设置为0 - 40度, 虽然今年夏天超过40度在我们这边很平常, 但是我们这里还是以40度为最高界限
风的大小范围0 - 10, 这里不是风的级数, 而是我自己构建的大小.模糊理论奥妙就在于不需要精确的逻辑值,
可以模糊描述.比如小风我设置为1 - 3, 然后有点大的风等等, 都是比较抽象的描述, 但是经过隶属函数可以看出, 往往某个值是在多个状态叠加.
衣服的件数我设置为1 - 6(不能一件衣服不穿), 如果按照本人自己的爱好, 我最多也只穿三件.不过考虑到实际还是设一个大点的范围

常见模糊隶属度函数


import matplotlib.pyplot as plt
import numpy as np
import skfuzzy as fuzz
from skfuzzy import control as ctrl
import matplotlib.pyplot as plt"""scikit-fuzzy模块,它可以实现模糊控制系统1.选择输入输出模糊集2.定义输入输出隶属度函数(不同的隶属度函数,会导致不同的控制特性)3.建立模糊控制表4.建立模糊控制规则5.模糊推理6.反模糊化7.输出结果绘制结果3D图
"""""" 方式一: 调用库函数 """
if 0:temp = ctrl.Antecedent(np.arange(0, 41, 1), 'temp')wind = ctrl.Antecedent(np.arange(0, 11, 1), 'wind')clothes = ctrl.Consequent(np.arange(1, 7, 1), 'clothes')# 自动找成员函数,分为三类temp.automf(3)wind.automf(3)# 设置目标的模糊规则clothes['low'] = fuzz.trimf(clothes.universe, [1, 1, 3])clothes['medium'] = fuzz.trimf(clothes.universe, [1, 3, 6])clothes['high'] = fuzz.trimf(clothes.universe, [3, 6, 6])rule1 = ctrl.Rule(temp['good'] | wind['poor'], clothes['low'])rule2 = ctrl.Rule(temp['average'], clothes['medium'])rule3 = ctrl.Rule(temp['poor'] | wind['good'], clothes['high'])rule1.view()rule2.view()rule3.view()# 创建控制系统,应用编写好的规则cloth_ctrl = ctrl.ControlSystem([rule1, rule2, rule3])# 创建控制仿真器cloth_num = ctrl.ControlSystemSimulation(cloth_ctrl)# 输入测试数据cloth_num.input['temp'] = 20cloth_num.input['wind'] = 2# 设置去模糊方法clothes.defuzzify_method = 'mom'# 计算结果cloth_num.compute()cloth_num_res = cloth_num.output['clothes']print(f"The result of clothes: {cloth_num_res}")# 可视化clothes.view(sim=cloth_num)plt.show()else:""" 方式二: 手动实现模糊规则 """plt.rcParams['font.family'] = 'simhei'x_temp = np.arange(0, 41, 1)x_wind = np.arange(0, 11, 1)x_clothes = np.arange(1, 7, 1)# 将三角隶属度函数对各个量进行隶属度映射temp_cold = fuzz.trimf(x_temp, [0, 0, 15])temp_warm = fuzz.trimf(x_temp, [5, 25, 35])temp_hot = fuzz.trimf(x_temp, [25, 40, 40])plt.figure()plt.title("Temperature")plt.plot(x_temp, temp_cold, 'b', label='cold')plt.plot(x_temp, temp_warm, 'y', label='warm')plt.plot(x_temp, temp_hot, 'r', label='hot')plt.legend()# plt.show()wind_low = fuzz.trimf(x_wind, [0, 0, 5])wind_medium = fuzz.trimf(x_wind, [0, 5, 10])wind_high = fuzz.trimf(x_wind, [5, 10, 10])plt.figure()plt.title("Wind")plt.plot(x_wind, wind_low, 'b', label='low')plt.plot(x_wind, wind_medium, 'y', label='medium')plt.plot(x_wind, wind_high, 'r', label='high')plt.legend()# plt.show()cloth_low = fuzz.trimf(x_clothes, [1, 1, 3])cloth_medium = fuzz.trimf(x_clothes, [1, 3, 6])cloth_high = fuzz.trimf(x_clothes, [3, 6, 6])plt.figure()plt.title("clothes")plt.plot(x_clothes, cloth_low, 'b', label='low')plt.plot(x_clothes, cloth_medium, 'y', label='medium')plt.plot(x_clothes, cloth_high, 'r', label='high')plt.legend()# plt.show()temp_test = 30wind_test = 5temp_level_cold = fuzz.interp_membership(x_temp, temp_cold, temp_test)temp_level_warm = fuzz.interp_membership(x_temp, temp_warm, temp_test)temp_level_hot = fuzz.interp_membership(x_temp, temp_hot, temp_test)wind_level_low = fuzz.interp_membership(x_wind, wind_low, wind_test)wind_level_medium = fuzz.interp_membership(x_wind, wind_medium, wind_test)wind_level_high = fuzz.interp_membership(x_wind, wind_high, wind_test)# 模糊规则# 当风小或者温度高的时候我们穿很少的衣服# 当温度中等, 比较温暖的时候我们穿得稍微多点# 当温度很低或者风很大的时候, 那我们就需要穿很多衣服了rule1 = np.fmax(temp_level_hot, wind_level_low)cloth_res_low = np.fmin(rule1, cloth_low)cloth_res_medium = np.fmin(temp_level_warm, cloth_medium)rule2 = np.fmax(temp_level_cold, wind_level_high)cloth_res_high = np.fmin(rule2, cloth_high)clothes = np.zeros_like(x_clothes)# visplt.figure(figsize=(8, 3))plt.title("结果")plt.plot(x_clothes, cloth_low, 'b')plt.fill_between(x_clothes, 0, cloth_res_low)plt.plot(x_clothes, cloth_medium, 'g')plt.fill_between(x_clothes, 0, cloth_res_medium)plt.plot(x_clothes, cloth_high, 'r')plt.fill_between(x_clothes, 0, cloth_res_high)# plt.show()# 去模糊aggregated = np.fmax(cloth_res_low, np.fmax(cloth_res_medium, cloth_res_high))# 去模糊方法:# 反模糊化方法有很多# centroid面积重心法# bisector面积等分法# mom最大隶属度平均法# som最大隶属度取最小法# lom最大隶属度取最大法cloth = fuzz.defuzz(x_clothes, aggregated, 'mom')cloth_res = fuzz.interp_membership(x_clothes, aggregated, cloth)plt.figure(figsize=(8, 3))plt.title(f"去模糊化结果cloth:{cloth}")plt.plot(x_clothes, cloth_low, 'b')plt.plot(x_clothes, cloth_medium, 'g')plt.plot(x_clothes, cloth_high, 'r')plt.fill_between(x_clothes, 0, aggregated, facecolor='orange')plt.plot([cloth, cloth], [0, cloth_res], 'k')plt.show()
  1. 测试温度:temp_test = 30;测试风速:wind_test = 5
    在这里插入图片描述
  1. 测试温度:temp_test = 10;测试风速:wind_test = 8
    在这里插入图片描述
  1. 测试温度:temp_test = 40;测试风速:wind_test = 2
    在这里插入图片描述
http://www.zhongyajixie.com/news/23657.html

相关文章:

  • 潍坊站总站人工服务电话雅虎搜索引擎中文版
  • 简述网站开发平台营销软文范文
  • 江西建设职业技术学院迎新网站seo是网络优化吗
  • 把自己做的动画传到哪个网站上发稿平台
  • wordpress后台500出错宝鸡seo外包公司
  • 甘肃谷歌seo长沙seo优化公司
  • 成都网站建设推广遵义网站seo
  • 百度云服务器做网站稳定吗百度世界排名
  • 山西手动网站建设推荐平台seo排名外包
  • 怎么创建网站一个网站可以优化多少关键词
  • 桂林做网站建设的公司排名seo公司哪家好
  • 可以在线做试卷的网站企业如何做网站
  • 一个购物交易网站怎么做中小企业管理培训班
  • 内网穿透做网站网络销售公司经营范围
  • 网站开发后台用什么全网营销公司排名前十
  • 深圳建设网站公品牌策划
  • 广州学生做网站四川网络推广推广机构
  • 个人网站建设哪家好百度搜索关键词
  • 沈阳市网站建设优化资讯
  • 原创文字的网站做引流推广的平台600
  • 哪些网站做写字楼出租磁力岛
  • 网站服务器响应时间过长西安全网优化
  • 给女朋友做网站 知乎网站优化公司哪家效果好
  • 金桥网站建设网站seo置顶
  • wordpress3.7.1下载肇庆seo外包公司
  • 做网站打算套用模板怎么查百度竞价关键词价格
  • 网站热图分析成都网络营销推广
  • 深圳市建设银行网站首页排名函数rank怎么用
  • 济南集团网站建设公司浏览器地址栏怎么打开
  • 网站建设服务 行业代码网络推广外包代理