当前位置: 首页 > news >正文

昭通昭阳区城乡建设管理局网站网站模板中心

昭通昭阳区城乡建设管理局网站,网站模板中心,dede减肥网站模板,武汉商城网站制作机器学习:学习KMeans算法,了解模型创建、使用模型及模型评价 作者:AOAIYI 作者简介:Python领域新星作者、多项比赛获奖者:AOAIYI首页 😊😊😊如果觉得文章不错或能帮助到你学习&#…

机器学习:学习KMeans算法,了解模型创建、使用模型及模型评价

作者:AOAIYI

作者简介:Python领域新星作者、多项比赛获奖者:AOAIYI首页

😊😊😊如果觉得文章不错或能帮助到你学习,可以点赞👍收藏📁评论📒+关注哦!👍👍👍

📜📜📜如果有小伙伴需要数据集和学习交流,文章下方有交流学习区!一起学习进步!💪


专栏案例:机器学习
机器学习:基于逻辑回归对某银行客户违约预测分析
机器学习:学习k-近邻(KNN)模型建立、使用和评价
机器学习:基于支持向量机(SVM)进行人脸识别预测
决策树算法分析天气、周末和促销活动对销量的影响
机器学习:线性回归分析女性身高与体重之间的关系
机器学习:基于主成分分析(PCA)对数据降维
机器学习:基于朴素贝叶斯对花瓣花萼的宽度和长度分类预测

文章目录

  • 机器学习:学习KMeans算法,了解模型创建、使用模型及模型评价
  • 一、实验目的
  • 二、实验原理
  • 三、实验环境
  • 四、实验内容
  • 五、实验步骤
    • 1.数据读取
    • 2.数据理解
    • 3.数据规整化处理
    • 4.数据建模
    • 5.查看模型
    • 6.预测模型
    • 7.结果输出
  • 总结


一、实验目的

学习sklearn模块中的KMeans算法

二、实验原理

K-means算法是将样本聚类成k个簇(cluster),具体算法描述如下:

1、 随机选取k个聚类质心点(cluster centroids)为
在这里插入图片描述
2、 重复下面过程直到收敛 {

对于每一个样例i,计算其应该属于的类
在这里插入图片描述
对于每一个类j,重新计算该类的质心
在这里插入图片描述
K是我们事先给定的聚类数,c(i)代表样例i与k个类中距离最近的那个类,c(i)的值是1到k中的一个。质心uj代表我们对属于同一个类的样本中心点的猜测,拿星团模型来解释就是要将所有的星星聚成k个星团,首先随机选取k个宇宙中的点(或者k个星星)作为k个星团的质心,然后第一步对于每一个星星计算其到k个质心中每一个的距离,然后选取距离最近的那个星团作为c(i),这样经过第一步每一个星星都有了所属的星团;第二步对于每一个星团,重新计算它的质心uj(对里面所有的星星坐标求平均)。重复迭代第一步和第二步直到质心不变或者变化很小。求点群中心的算法:

一般来说,求点群中心点的算法你可以使用各个点的X/Y坐标的平均值。不过,我这里想告诉大家另三个求中心点的的公式:

1)Minkowski Distance公式——λ可以随意取值,可以是负数,也可以是正数,或是无穷大。
在这里插入图片描述
2)Euclidean Distance公式——也就是第一个公式λ=2的情况
在这里插入图片描述
3)CityBlock Distance公式——也就是第一个公式λ=1的情况
在这里插入图片描述

三、实验环境

Python 3.9

Anaconda

Jupyter Notebook

四、实验内容

学习KMeans算法,了解模型创建、使用模型及模型评价等操作

五、实验步骤

1.数据读取

1.查看数据内容
在这里插入图片描述
在这里插入图片描述

2.使用pandas的read_table方法读取protein.txt文件,以\t分隔并传入protein

import pandas as pd  
protein = pd.read_table("D:\CSDN\data\kmeans\protein.txt", sep='\t')  
protein.head()  

在这里插入图片描述

2.数据理解

1.查看protein的描述性统计

print(protein.describe())

在这里插入图片描述

2.查看数据基本信息

protein.info()

在这里插入图片描述

3.查看protein的列名

print(protein.columns)

在这里插入图片描述

4.用.shape方法可以读取矩阵的形状

print(protein.shape)  

在这里插入图片描述

3.数据规整化处理

1.导入sklearn模块中的preprocessing函数

from sklearn import preprocessing  
#删除protein中的Country列,axis=1表示横向执行  
sprotein = protein.drop(['Country'], axis=1) 
print(sprotein) 

在这里插入图片描述

使用preprocessing函数中的.scale()方法进行标准化,一般会把train和test集放在一起做标准化,
或者在train集上做标准化后,用同样的标准化器去标准化test集此时可以用scaler

sprotein_scaled = preprocessing.scale(sprotein)  
print(sprotein_scaled)  

在这里插入图片描述

4.数据建模

1.导入sklearn模块中的KMeans方法

from sklearn.cluster import KMeans  
#创建一个1~20的列表并赋值给NumberOfClusters  
NumberOfClusters = range(1, 20)  
#n_clusters参数:分成的簇数(要生成的质心数)  
kmeans = [KMeans(n_clusters=i) for i in NumberOfClusters]  
score = [kmeans[i].fit(sprotein_scaled).score(sprotein_scaled) for i in range(len(kmeans))]  
score  

在这里插入图片描述

2.导入Matplotlib模块

import matplotlib.pyplot as plt  
%matplotlib inline  
plt.plot(NumberOfClusters,score)  
plt.xlabel('Number of Clusters')  
plt.ylabel('Score')  
plt.title('Elbow Curve')  
plt.show() 

在这里插入图片描述

3.使用KMeans算法生成实例myKmeans

myKmeans = KMeans(algorithm="auto",n_clusters=5,n_init=10,max_iter=200) 

参数解释:

  • algorithm:有“auto”, “full” or “elkan”三种选择,默认的”auto”则会根据数据值是否是稀疏的,来决定如何选择”full”和“elkan”,一般数据是稠密的,那么就是 “elkan”,否则就是”full”

  • n_clusters=5:即k值,一般需要多试一些值以获得较好的聚类效果

  • n_init:用不同的初始化质心运行算法的次数

  • max_iter: 最大的迭代次数

4.利用.fit()方法对sprotein_scaled进行模型拟合

myKmeans.fit(sprotein_scaled) 

5.查看模型

1.打印输出myKmeans模型

print(myKmeans)

在这里插入图片描述

6.预测模型

1.使用.predict方法,用训练好的模型进行预测

y_kmeans = myKmeans.predict(sprotein)  
print(y_kmeans) 

在这里插入图片描述

7.结果输出

1.编写print_kmcluster函数并输出结果

def print_kmcluster(k):  '''用于聚类结果的输出  k:为聚类中心个数  '''  for i in range(k):  print('聚类', i)  ls = []  for index, value in enumerate(y_kmeans):  if i == value:  ls.append(index)  print(protein.loc[ls, ['Country', 'RedMeat', 'Fish', 'Fr&Veg']])  print_kmcluster(5)

在这里插入图片描述


总结

K-Means算法是一种典型的基于划分的聚类算法,也是一种无监督学习算法。K-Means算法的思想很简单,对给定的样本集,用欧氏距离作为衡量数据对象间相似度的指标,相似度与数据对象间的距离成反比,相似度越大,距离越小。

走在人生的跑道上,不管遇到任何的困难,我们都应该坚持下去,永不退缩,只有这样我们才能够成功。

http://www.zhongyajixie.com/news/23441.html

相关文章:

  • 长春做网站的电话速推网
  • 网站建设 中关村最好的搜索引擎
  • 南通网站建设论文什么是外链
  • 品牌网站建设推广营销推广方式有哪些
  • 企业网站制作找什么人长沙网站托管优化
  • 深圳h5网站公司网站日常维护有哪些
  • 如何在网盘上做网站护肤品推广软文
  • 前端素材网站国内新闻最新
  • 如何做的mmd下载网站济南百度推广开户
  • 做装修公司的网站seo网站优化助理
  • vs做的网站如何使用免费行情网站的推荐理由
  • 网站入侵怎么做seo1搬到哪里去了
  • 163com免费邮箱登seo教程自学
  • 中亿丰建设集团股份有限公司官方网站武汉大学人民医院
  • 网站建设留言板怎么做企业网络营销策划案
  • 重庆有哪些做网站的公司福州短视频seo
  • 彩票网站开发演示企业营销型网站
  • 谷歌广告怎么投放网站怎样关键词排名优化
  • 网站建设具体需求18岁以上站长统计
  • 深一集团的网站谁做的全网推广系统
  • node.js可以做网站关键词分析
  • 购物网站图标网络推广seo是什么
  • 网站搜索条怎么做seo教程技术
  • 北京网站建设qq群推广方案范例
  • 零基础网站建设视频教程网络营销包括哪些
  • 专业网站建设电话seo提升排名技巧
  • 成都市城乡建设网站重庆seo网站收录优化
  • 分销网站系统代写企业软文
  • 抚州营销型网站建设地推一手项目平台
  • 网站开发用户需求分析软件开发培训学校