当前位置: 首页 > news >正文

温州专业微网站制作公司哪家好seo软件哪个好

温州专业微网站制作公司哪家好,seo软件哪个好,网站开发环境实验报告,有用dojo做的网站吗个人主页:Icomi 在深度学习蓬勃发展的当下,PyTorch 是不可或缺的工具。它作为强大的深度学习框架,为构建和训练神经网络提供了高效且灵活的平台。神经网络作为人工智能的核心技术,能够处理复杂的数据模式。通过 PyTorch&#xff0…

       

个人主页:Icomi

在深度学习蓬勃发展的当下,PyTorch 是不可或缺的工具。它作为强大的深度学习框架,为构建和训练神经网络提供了高效且灵活的平台。神经网络作为人工智能的核心技术,能够处理复杂的数据模式。通过 PyTorch,我们可以轻松搭建各类神经网络模型,实现从基础到高级的人工智能应用。接下来,就让我们一同走进 PyTorch 的世界,探索神经网络与人工智能的奥秘。本系列为PyTorch入门文章,若各位大佬想持续跟进,欢迎与我交流互关。

         前面我们学习了张量和 numpy 数组的相互转换,这是我们在深度学习数据处理中非常实用的技能。

        今天,咱们要讲讲张量的拼接操作,这可是在神经网络搭建过程中极为常用的方法,就好比搭建一座宏伟建筑时不可或缺的连接工艺。想象一下,我们构建神经网络就像搭建一座复杂的大厦,张量就是构成大厦的各种预制构件,而拼接操作就像是把这些构件精准连接在一起的关键技术。

        比如说,在后面将要学习到的残差网络里,张量的拼接起到了至关重要的作用。残差网络能够有效解决深度神经网络训练过程中的梯度消失和梯度爆炸问题,让网络可以更深层次地学习数据特征。这里面,通过巧妙地拼接不同层的张量,就像是把不同功能的建筑模块合理组合,从而构建出了强大的深层网络结构。

        还有注意力机制,这也是深度学习领域的一个重要概念。在注意力机制中,张量的拼接帮助我们对不同的信息进行整合与聚焦,就像在纷繁复杂的信息海洋中,通过拼接操作找到最关键的信息片段并组合起来,让模型能够更加 “聪明” 地处理数据。

        所以,掌握张量的拼接操作,对于我们理解和构建先进的神经网络模型至关重要。接下来,咱们就深入学习一下张量的拼接到底是怎么实现的,以及在不同场景下该如何灵活运用它。

1. torch.cat 函数的使用¶

torch.cat 函数可以将两个张量根据指定的维度拼接起来.
 

import torchdef tensor_concatenation():# 创建第一个三维随机整数张量tensor_1 = torch.randint(0, 10, [3, 5, 4])# 创建第二个三维随机整数张量tensor_2 = torch.randint(0, 10, [3, 5, 4])print(tensor_1)print(tensor_2)print('-' * 50)# 1. 按 0 维度拼接concatenated_tensor_dim0 = torch.cat([tensor_1, tensor_2], dim=0)print(concatenated_tensor_dim0.shape)print('-' * 50)# 2. 按 1 维度拼接concatenated_tensor_dim1 = torch.cat([tensor_1, tensor_2], dim=1)print(concatenated_tensor_dim1.shape)print('-' * 50)# 3. 按 2 维度拼接concatenated_tensor_dim2 = torch.cat([tensor_1, tensor_2], dim=2)print(concatenated_tensor_dim2)if __name__ == '__main__':tensor_concatenation()

程序输出结果:

tensor([[[6, 8, 3, 5],[1, 1, 3, 8],[9, 0, 4, 4],[1, 4, 7, 0],[5, 1, 4, 8]],[[0, 1, 4, 4],[4, 1, 8, 7],[5, 2, 6, 6],[2, 6, 1, 6],[0, 7, 8, 9]],[[0, 6, 8, 8],[5, 4, 5, 8],[3, 5, 5, 9],[3, 5, 2, 4],[3, 8, 1, 1]]])
tensor([[[4, 6, 8, 1],[0, 1, 8, 2],[4, 9, 9, 8],[5, 1, 5, 9],[9, 4, 3, 0]],[[7, 6, 3, 3],[4, 3, 3, 2],[2, 1, 1, 1],[3, 0, 8, 2],[8, 6, 6, 5]],[[0, 7, 2, 4],[4, 3, 8, 3],[4, 2, 1, 9],[4, 2, 8, 9],[3, 7, 0, 8]]])
--------------------------------------------------
torch.Size([6, 5, 4])
--------------------------------------------------
torch.Size([3, 10, 4])
tensor([[[6, 8, 3, 5, 4, 6, 8, 1],[1, 1, 3, 8, 0, 1, 8, 2],[9, 0, 4, 4, 4, 9, 9, 8],[1, 4, 7, 0, 5, 1, 5, 9],[5, 1, 4, 8, 9, 4, 3, 0]],[[0, 1, 4, 4, 7, 6, 3, 3],[4, 1, 8, 7, 4, 3, 3, 2],[5, 2, 6, 6, 2, 1, 1, 1],[2, 6, 1, 6, 3, 0, 8, 2],[0, 7, 8, 9, 8, 6, 6, 5]],[[0, 6, 8, 8, 0, 7, 2, 4],[5, 4, 5, 8, 4, 3, 8, 3],[3, 5, 5, 9, 4, 2, 1, 9],[3, 5, 2, 4, 4, 2, 8, 9],[3, 8, 1, 1, 3, 7, 0, 8]]])

2. torch.stack 函数的使用¶

torch.stack 函数可以将两个张量根据指定的维度叠加起来.

import torchdef test():data1= torch.randint(0, 10, [2, 3])data2= torch.randint(0, 10, [2, 3])print(data1)print(data2)new_data = torch.stack([data1, data2], dim=0)print(new_data.shape)new_data = torch.stack([data1, data2], dim=1)print(new_data.shape)new_data = torch.stack([data1, data2], dim=2)print(new_data)if __name__ == '__main__':test()

3. 总结¶

张量的拼接操作也是在后面我们经常使用一种操作。cat 函数可以将张量按照指定的维度拼接起来,stack 函数可以将张量按照指定的维度叠加起来。

http://www.zhongyajixie.com/news/23323.html

相关文章:

  • 浙江省住房与城乡建设部网站公司官网模板
  • 做网站主流语言免费推广网站平台
  • 辽宁省建设银行e护航网站关键词优化搜索排名
  • 中国企业500强2021名单长沙seo优化服务
  • 构建网站需要会什么意思seo综合查询工具下载
  • 怎么做代刷网站教程网络推广运营
  • 网站开发不兼容ie8千锋培训机构官网
  • 中小企业建网站哪个好网络优化大师手机版
  • 深圳罗湖做网站东莞关键词优化实力乐云seo
  • 金融网站怎么做的拓客渠道有哪些
  • 武汉网站建设yundaowseo兼职论坛
  • 济南抖音seo电脑优化
  • 广州番禺区有什么好玩的景点刷移动关键词优化
  • 企业网站备案名称窍门如何在互联网上做推广
  • 免费做网站txt外链制作公司网页多少钱
  • 迪士尼网站是谁做的网址怎么创建
  • 遵义网站开发公司下载百度免费版
  • 南阳网站运营招聘信息微信指数是什么意思
  • 办公空间设计案例ppt网站优化建议
  • 成都网站改版兰州网络推广优化服务
  • wordpress嵌入哔哩哔哩视频乌海网站seo
  • 2021给个最新网站今日热点头条新闻
  • wordpress 去优酷广告插件搜索引擎优化课程
  • 网络上做假网站做物流seo站长网怎么下载
  • 门户网页重庆百度seo公司
  • wordpress修改文件百度搜索网站优化
  • wordpress系统教程 pdf优化电脑的软件有哪些
  • 锦州做网站哪家好网络优化工程师工资
  • ftp无法直接wordpress福州百度推广排名优化
  • 南昌seo网站管理seo优化资源