当前位置: 首页 > news >正文

wordpress产品网站自助建站系统代理

wordpress产品网站,自助建站系统代理,h5网站开发费用,做慧聪网站多少钱1. 背景概述 在大规模数据处理和向量相似性搜索场景中,内存索引的使用显著提升了查询速度和效率。Milvus 提供了多种内存索引类型,以满足不同场景下的性能需求。本文将介绍 Milvus 支持的各种内存索引类型及其适用场景、配置参数和使用方法。 2. 为什么…

1. 背景概述

在大规模数据处理和向量相似性搜索场景中,内存索引的使用显著提升了查询速度和效率。Milvus 提供了多种内存索引类型,以满足不同场景下的性能需求。本文将介绍 Milvus 支持的各种内存索引类型及其适用场景、配置参数和使用方法。

2. 为什么选择内存索引?

内存索引可以有效组织数据,从而提升查询性能。在 Milvus 中,每个向量字段(Field)可以选择一种适合的索引类型,以优化特定查询的速度。Milvus 支持的索引类型主要基于近似最近邻搜索(ANNS)算法,通过允许一定精度的牺牲来实现快速搜索,从而加速大规模数据集上的查询。

3. Milvus 支持的索引类型概览及其使用

Milvus 支持多种索引类型,不同索引在性能、精确度和内存需求方面有所不同。以下内容展示每种索引的使用场景、配置参数及示例代码。

1. FLAT 索引
  • 适用场景:数据集较小且对搜索精度要求极高。
  • 特点:进行穷举搜索,不对数据进行压缩,保证 100% 的召回率和精确性。
  • 配置与使用:无需配置额外参数,直接创建即可。
# 配置索引参数
index_params = {"metric_type": "L2", "index_type": "FLAT"}# 创建索引
collection.create_index(field_name="embedding", index_params=index_params)
2. IVF_FLAT 索引
  • 适用场景:需要较高的召回率和快速查询的场景。
  • 特点:将向量数据划分为多个聚类单元,通过调节 nprobe 在召回率与查询速度之间找到平衡。
  • 配置与使用
# 配置索引参数
index_params = {"metric_type": "L2","index_type": "IVF_FLAT","params": {"nlist": 128}
}# 创建索引
collection.create_index(field_name="embedding", index_params=index_params)# 配置搜索参数
search_params = {"params": {"nprobe": 16}
}
results = collection.search(data=query_vectors, anns_field="embedding", param=search_params, limit=top_K)
3. IVF_SQ8 索引
  • 适用场景:内存资源有限,允许轻微的召回率下降。
  • 特点:标量量化(SQ)将每个浮点数(4 字节)压缩为 1 字节,减少内存占用。
  • 配置与使用
# 配置索引参数
index_params = {"metric_type": "L2","index_type": "IVF_SQ8","params": {"nlist": 128}
}# 创建索引
collection.create_index(field_name="embedding", index_params=index_params)# 配置搜索参数
search_params = {"params": {"nprobe": 8}
}
results = collection.search(data=query_vectors, anns_field="embedding", param=search_params, limit=top_K)
4. IVF_PQ 索引
  • 适用场景:内存资源有限,允许较大召回率下降,适合极高速查询。
  • 特点:结合 IVF 和 PQ(乘积量化),进一步压缩数据存储需求。
  • 配置与使用
# 配置索引参数
index_params = {"metric_type": "L2","index_type": "IVF_PQ","params": {"nlist": 128,"m": 4,  # 量化因子数"nbits": 8}
}# 创建索引
collection.create_index(field_name="embedding", index_params=index_params)# 配置搜索参数
search_params = {"params": {"nprobe": 8}
}
results = collection.search(data=query_vectors, anns_field="embedding", param=search_params, limit=top_K)
5. SCANN 索引
  • 适用场景:高精度、高查询速率的场景,适合内存资源较为充足的场景。
  • 特点:与 IVF_PQ 类似,但利用 SIMD 提升计算效率。
  • 配置与使用
# 配置索引参数
index_params = {"metric_type": "L2","index_type": "SCANN","params": {"nlist": 128,"reorder_k": 64}
}# 创建索引
collection.create_index(field_name="embedding", index_params=index_params)# 执行搜索
results = collection.search(data=query_vectors, anns_field="embedding", limit=top_K)
6. HNSW 索引
  • 适用场景:高精度和快速查询,适合内存资源充足的场景。
  • 特点:HNSW 使用多层结构的导航小世界图(NSW)进行搜索。
  • 配置与使用
# 配置索引参数
index_params = {"metric_type": "L2","index_type": "HNSW","params": {"M": 16,"efConstruction": 200}
}# 创建索引
collection.create_index(field_name="embedding", index_params=index_params)# 配置搜索参数
search_params = {"params": {"ef": 64}
}
results = collection.search(data=query_vectors, anns_field="embedding", param=search_params, limit=top_K)

4. 索引的配置与选择

在选择索引时,需要综合考虑数据规模、查询速度需求、硬件资源等因素。以下是对常用索引的总结:

索引类型适用场景精确度查询速度内存需求
FLAT小数据集,需 100% 召回
IVF_FLAT大数据集,需较高召回
IVF_SQ8内存有限,可接受轻微精度损失
IVF_PQ内存有限,可接受较大精度损失极快极低
SCANN高精度,内存充足极快
HNSW高精度,内存充足极快

5. 结语

内存索引在 Milvus 中起到优化查询性能的关键作用。通过合理选择和配置索引类型,可以在精确度和查询速度之间找到平衡,以满足不同的业务需求。希望本文的内容能够帮助您在大规模数据处理中实现更高效的向量相似性搜索。

http://www.zhongyajixie.com/news/21602.html

相关文章:

  • 做塑胶材料的网站b2b平台是什么意思
  • 郑州网站开发定制云盘搜索
  • 小小影视大全免费高清版seo网络推广公司
  • 成都住建局官网拆迁公告怎么优化电脑系统
  • 网站开发成本预算表竞价网官网
  • 山东省住房和城乡建设厅服务网站seo排名第一的企业
  • 福千欣隆网站建设公司怎么样建设企业营销型网站
  • 常德制作网站百度收录批量提交入口
  • 丰台做网站腾讯广告官网
  • 网站开发合同审查网站优化推广费用
  • 合肥建设工程交易网站seo咨询服务
  • 有什么做日结兼职的网站线上销售平台
  • 微信网站建设电话网站制作模板
  • 如何提高自己的营销能力网站优化要做哪些
  • 动态网站建设2021年网络营销考试题及答案
  • 长沙网站建设 个人公司网站营销
  • 周口哪家做网站好国际足联世界排名
  • 网站优化工作室推广app软件
  • 专门做nba评论的网站怎么找需要做推广的公司
  • 大专公司网站建设毕业论文快速网站推广优化
  • 网站注册备案查询关键词排名点击软件怎样
  • 桐城网站建设网络营销做得好的企业有哪些
  • 双语网站怎么做的北京、广州最新发布
  • 4G访问wordpress专业的网站优化公司排名
  • 黄岛区做网站的东莞seo建站如何推广
  • glitch做网站宁波seo快速优化课程
  • 网站建设 知乎免费外链网站seo发布
  • 中文域名网站有哪些seo引擎优化培训
  • 见网站建设客户技巧网站seo基础优化
  • 网站备案官网win7一键优化工具