当前位置: 首页 > news >正文

网站制作公司价格北京网站优化哪家好

网站制作公司价格,北京网站优化哪家好,鞍山玉佛苑玉佛图片,wordpress 局域网访问不了一、说明 本文分享基于 Fate 使用 横向联邦 神经网络算法 对 多分类 的数据进行 模型训练,并使用该模型对数据进行 多分类预测。 二分类算法:是指待预测的 label 标签的取值只有两种;直白来讲就是每个实例的可能类别只有两种 (0 或者 1)&…

一、说明

本文分享基于 Fate 使用 横向联邦 神经网络算法 对 多分类 的数据进行 模型训练,并使用该模型对数据进行 多分类预测

  • 二分类算法:是指待预测的 label 标签的取值只有两种;直白来讲就是每个实例的可能类别只有两种 (0 或者 1),例如性别只有  或者 ;此时的分类算法其实是在构建一个分类线将数据划分为两个类别。
  • 多分类算法:是指待预测的 label 标签的取值可能有多种情况,例如个人爱好可能有 篮球足球电影 等等多种类型。常见算法:Softmax、SVM、KNN、决策树。

关于 Fate 的核心概念、单机部署、训练以及预测请参考以下相关文章:

  • 《隐私计算 FATE - 关键概念与单机部署指南》
  • 《隐私计算 FATE - 模型训练》
  • 《隐私计算 FATE - 离线预测》

二、准备训练数据

上传到 Fate 里的数据有两个字段名必需是规定的,分别是主键为 id 字段和分类字段为 y 字段,y 字段就是所谓的待预测的 label 标签;其他的特征字段 (属性) 可任意填写,例如下面例子中的 x0 - x9

例如有一条用户数据为: 收入 : 10000,负债 : 5000,是否有还款能力 : 1 ;数据中的 收入 和 负债 就是特征字段,而 是否有还款能力 就是分类字段。

本文只描述关键部分,关于详细的模型训练步骤,请查看文章《隐私计算 FATE - 模型训练》

2.1. guest 端

10 条数据,包含 1 个分类字段 y 和 10 个标签字段 x0 - x9

y 值有 0、1、2、3 四个分类

上传到 Fate 中,表名为 muti_breast_homo_guest 命名空间为 experiment

2.2. host 端

10 条数据,字段与 guest 端一样,但是内容不一样

上传到 Fate 中,表名为 muti_breast_homo_host 命名空间为 experiment

三、执行训练任务

3.1. 准备 dsl 文件

创建文件 homo_nn_dsl.json 内容如下 :

{"components": {"reader_0": {"module": "Reader","output": {"data": ["data"]}},"data_transform_0": {"module": "DataTransform","input": {"data": {"data": ["reader_0.data"]}},"output": {"data": ["data"],"model": ["model"]}},"homo_nn_0": {"module": "HomoNN","input": {"data": {"train_data": ["data_transform_0.data"]}},"output": {"data": ["data"],"model": ["model"]}}}
}

3.2. 准备 conf 文件

创建文件 homo_nn_multi_label_conf.json 内容如下 :

{"dsl_version": 2,"initiator": {"role": "guest","party_id": 9999},"role": {"arbiter": [10000],"host": [10000],"guest": [9999]},"component_parameters": {"common": {"data_transform_0": {"with_label": true},"homo_nn_0": {"encode_label": true,"max_iter": 15,"batch_size": -1,"early_stop": {"early_stop": "diff","eps": 0.0001},"optimizer": {"learning_rate": 0.05,"decay": 0.0,"beta_1": 0.9,"beta_2": 0.999,"epsilon": 1e-07,"amsgrad": false,"optimizer": "Adam"},"loss": "categorical_crossentropy","metrics": ["accuracy"],"nn_define": {"class_name": "Sequential","config": {"name": "sequential","layers": [{"class_name": "Dense","config": {"name": "dense","trainable": true,"batch_input_shape": [null,18],"dtype": "float32","units": 5,"activation": "relu","use_bias": true,"kernel_initializer": {"class_name": "GlorotUniform","config": {"seed": null,"dtype": "float32"}},"bias_initializer": {"class_name": "Zeros","config": {"dtype": "float32"}},"kernel_regularizer": null,"bias_regularizer": null,"activity_regularizer": null,"kernel_constraint": null,"bias_constraint": null}},{"class_name": "Dense","config": {"name": "dense_1","trainable": true,"dtype": "float32","units": 4,"activation": "sigmoid","use_bias": true,"kernel_initializer": {"class_name": "GlorotUniform","config": {"seed": null,"dtype": "float32"}},"bias_initializer": {"class_name": "Zeros","config": {"dtype": "float32"}},"kernel_regularizer": null,"bias_regularizer": null,"activity_regularizer": null,"kernel_constraint": null,"bias_constraint": null}}]},"keras_version": "2.2.4-tf","backend": "tensorflow"},"config_type": "keras"}},"role": {"host": {"0": {"reader_0": {"table": {"name": "muti_breast_homo_host","namespace": "experiment"}}}},"guest": {"0": {"reader_0": {"table": {"name": "muti_breast_homo_guest","namespace": "experiment"}}}}}}
}

注意 reader_0 组件的表名和命名空间需与上传数据时配置的一致。

3.3. 提交任务

执行以下命令:

flow job submit -d homo_nn_dsl.json -c homo_nn_multi_label_conf.json

执行成功后,查看 dashboard 显示:

四、准备预测数据

与前面训练的数据字段一样,但是内容不一样,y 值全为 0

4.1. guest 端

上传到 Fate 中,表名为 predict_muti_breast_homo_guest 命名空间为 experiment

4.2. host 端

上传到 Fate 中,表名为 predict_muti_breast_homo_host 命名空间为 experiment

五、准备预测配置

本文只描述关键部分,关于详细的预测步骤,请查看文章《隐私计算 FATE - 离线预测》

创建文件 homo_nn_multi_label_predict.json 内容如下 :

{"dsl_version": 2,"initiator": {"role": "guest","party_id": 9999},"role": {"arbiter": [10000],"host": [10000],"guest": [9999]},"job_parameters": {"common": {"model_id": "arbiter-10000#guest-9999#host-10000#model","model_version": "202207061504081543620","job_type": "predict"}},"component_parameters": {"role": {"guest": {"0": {"reader_0": {"table": {"name": "predict_muti_breast_homo_guest","namespace": "experiment"}}}},"host": {"0": {"reader_0": {"table": {"name": "predict_muti_breast_homo_host","namespace": "experiment"}}}}}}
}

注意以下两点:

  1. model_id 和 model_version 需修改为模型部署后的版本号。

  2. reader_0 组件的表名和命名空间需与上传数据时配置的一致。

六、执行预测任务

执行以下命令:

flow job submit -c homo_nn_multi_label_predict.json

执行成功后,查看 homo_nn_0 组件的数据输出:

可以看到算法输出的预测结果。

http://www.zhongyajixie.com/news/21031.html

相关文章:

  • 怎样建网站联系方式360seo优化
  • 门户网站建设模板企业网页设计制作
  • 怎么下载电脑本机wordpress东莞seo顾问
  • 江苏常州烽火台网络推广seo人员的相关薪资
  • 网站建设是什么语言宁波网站推广联系方式
  • 网站免费关键词如何做营销目标分为三个方面
  • 免费icp备案服务码博客优化网站seo怎么写
  • 做网站如何让盈利搜狗收录查询
  • wordpress 不同站点百度域名购买
  • 做网站python和php杭州网络优化公司排名
  • 帮人建网站价格网址之家大全
  • 网站制作哪些公司制作深圳最新通告今天
  • 阳谷做网站外包公司的人好跳槽吗
  • 企业网站维护外包seowhy
  • 网站开发验收流程北京网络seo推广公司
  • 新建的网站打不开品牌策划方案怎么做
  • 网站开发哪里好微信社群营销
  • 大连建设网站制作河南郑州网站顾问
  • 在线书店网站怎么做百度一下百度主页
  • 关于校园网站的策划书抖音营销推广怎么做
  • 日本做爰网站seo在线诊断工具
  • 2015年友情链接网站源代码下载著名的营销成功的案例
  • 山东做网站的株洲疫情最新情况
  • 商城网站做推广方案天津网站建设
  • 网站制作台州专业网站推广引流
  • 域名网络的解析网站嘉兴新站seo外包
  • 打造一个网站需要多少钱郑州网站推广效果
  • 嘉善在线做网站吗百度竞价推广登录
  • 彩票网站怎么做代理搜索引擎营销的英文简称
  • 西宁网站建设排名今日头条新闻