当前位置: 首页 > news >正文

暴雪国服官网入口seo云优化软件

暴雪国服官网入口,seo云优化软件,自己有网站怎么做app,综合性型门户网站有哪些文章目录 数据库和数据仓库的区别Hive安装配置Hive使用方式Hive日志配置 数据库和数据仓库的区别 数据库:传统的关系型数据库主要应用在基本的事务处理,比如交易,支持增删改查数据仓库:主要做一些复杂的分析操作,侧重…

文章目录

    • 数据库和数据仓库的区别
    • Hive安装配置
    • Hive使用方式
    • Hive日志配置

数据库和数据仓库的区别

  • 数据库:传统的关系型数据库主要应用在基本的事务处理,比如交易,支持增删改查
  • 数据仓库:主要做一些复杂的分析操作,侧重决策支持,相对于数据库而言,数据仓库分析的数据规模要大的多,只支持查询
  • 本质区别是OLTP(On-Line-Transaction Processing)和OLAP(On-Line-Analytical Processing)的区别,OLTP称为联机事务处理,也是面向交易的处理系统,它是针对具体的业务在数据库联机的日常操作,通常对少数记录进行查询、修改,用户关心的是响应;时间,数据的安全性,完整性等问题;OLAP是分析性处理,称为联机分析处理,一般针对某些主题历史数据进行分析,支持管理决策

27e4bfcfd37c7cfc0c5119024e40d75f

Hive安装配置

# 解压完之后
[root@hadoop04 conf]# mv hive-env.sh.template hive-env.sh
[root@hadoop04 conf]# mv hive-default.xml.template hive-site.xml#修改配置
[root@hadoop04 conf]# vim hive-env.sh
export JAVA_HOME=/home/soft/jdk1.8
export HIVE_HOME=/home/soft/apache-hive-3.1.2
export HADOOP_HOME=/home/soft/hadoop-3.2.0# 根据name修改对应配置
[root@hadoop04 conf]# vim hive-site.xml </property><property><name>hive.exec.local.scratchdir</name><value>/home/hive_repo/scratchdir</value><description>Local scratch space for Hive jobs</description></property><property><name>hive.downloaded.resources.dir</name><value>/home/hive_repo/resources</value><description>Temporary local directory for added resources in the remote file system.</description></property><property><name>javax.jdo.option.ConnectionURL</name><value>jdbc:mysql://ip:port/hive?serverTimezone=Asia/Shanghai</value><description>JDBC connect string for a JDBC metastore.To use SSL to encrypt/authenticate the connection, provide database-specific SSL flag in the connection URL.For example, jdbc:postgresql://myhost/db?ssl=true for postgres database.</description></property><property><name>javax.jdo.option.ConnectionUserName</name><value>root</value><description>Username to use against metastore database</description></property><property><name>javax.jdo.option.ConnectionPassword</name><value>123456</value><description>password to use against metastore database</description></property><property><name>javax.jdo.option.ConnectionDriverName</name><value>com.mysql.cj.jdbc.Driver</value><description>Driver class name for a JDBC metastore</description></property># 初始化数据仓库[root@hadoop04 apache-hive-3.1.2]# bin/schematool -dbType mysql -initSchema# 看到有下面那些表就算完成啦

image-20240311135739177

Hive使用方式

命令行方式

# 连接hive
[root@hadoop04 apache-hive-3.1.2]# bin/hive
which: no hbase in (/home/soft/jdk1.8/bin:/home/soft/hadoop-3.2.0/bin:/home/soft/hadoop-3.2.0/sbin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/root/bin)
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/home/soft/apache-hive-3.1.2/lib/log4j-slf4j-impl-2.10.0.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/home/soft/hadoop-3.2.0/share/hadoop/common/lib/slf4j-log4j12-1.7.25.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.apache.logging.slf4j.Log4jLoggerFactory]
Hive Session ID = 505baa88-4bd1-4f00-9345-448ae17ab151Logging initialized using configuration in jar:file:/home/soft/apache-hive-3.1.2/lib/hive-common-3.1.2.jar!/hive-log4j2.properties Async: true
Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
Hive Session ID = dfffb77e-23d3-4c56-9457-32f30b5f4e3c# 查询
hive> show tables;
OK
Time taken: 1.019 seconds
# 建表
hive> create table t1(id int,name string);
OK
Time taken: 1.875 seconds
hive> show tables;
OK
t1
Time taken: 0.388 seconds, Fetched: 1 row(s)
# 插入数据 会进行mapreduce
hive> insert into t1(id,name)values(1,"test");
Query ID = root_20240311140339_1e1450d1-2227-4b3d-bb10-e21f0016903b
Total jobs = 3
Launching Job 1 out of 3
Number of reduce tasks determined at compile time: 1
In order to change the average load for a reducer (in bytes):set hive.exec.reducers.bytes.per.reducer=<number>
In order to limit the maximum number of reducers:set hive.exec.reducers.max=<number>
In order to set a constant number of reducers:set mapreduce.job.reduces=<number>
Starting Job = job_1710135432246_0001, Tracking URL = http://hadoop01:8088/proxy/application_1710135432246_0001/
Kill Command = /home/soft/hadoop-3.2.0/bin/mapred job  -kill job_1710135432246_0001
Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 1
2024-03-11 14:04:00,036 Stage-1 map = 0%,  reduce = 0%
2024-03-11 14:04:08,605 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 2.66 sec
2024-03-11 14:04:16,949 Stage-1 map = 100%,  reduce = 100%, Cumulative CPU 4.69 sec
MapReduce Total cumulative CPU time: 4 seconds 690 msec
Ended Job = job_1710135432246_0001
Stage-4 is selected by condition resolver.
Stage-3 is filtered out by condition resolver.
Stage-5 is filtered out by condition resolver.
Moving data to directory hdfs://hadoop01:9000/user/hive/warehouse/t1/.hive-staging_hive_2024-03-11_14-03-39_724_266361142260875320-1/-ext-10000
Loading data to table default.t1
MapReduce Jobs Launched: 
Stage-Stage-1: Map: 1  Reduce: 1   Cumulative CPU: 4.69 sec   HDFS Read: 15158 HDFS Write: 236 SUCCESS
Total MapReduce CPU Time Spent: 4 seconds 690 msec
OK
Time taken: 42.328 seconds
hive> select * from t1;
OK
1	test
Time taken: 0.726 seconds, Fetched: 1 row(s)
hive> drop table t1;
OK
Time taken: 1.368 seconds
# 退出
hive> quit;

Hive日志配置

运行时日志

[root@hadoop04 conf]# mv hive-log4j2.properties.template hive-log4j2.properties
[root@hadoop04 conf]# vim hive-log4j2.properties 
# list of properties
property.hive.log.level = INFO
property.hive.root.logger = DRFA
property.hive.log.dir = /home/hive_repo/log
property.hive.log.file = hive.log
property.hive.perflogger.log.level = INFO

任务执行日志

[root@hadoop04 conf]# mv hive-exec-log4j2.properties.template hive-exec-log4j2.properties
[root@hadoop04 conf]# vim hive-exec-log4j2.properties status = INFO
name = HiveExecLog4j2
packages = org.apache.hadoop.hive.ql.log# list of properties
property.hive.log.level = INFO
property.hive.root.logger = FA
property.hive.query.id = hadoop
property.hive.log.dir = /home/hive_repo/log
property.hive.log.file = ${sys:hive.query.id}.log

level = INFO
property.hive.root.logger = FA
property.hive.query.id = hadoop
property.hive.log.dir = /home/hive_repo/log
property.hive.log.file = ${sys:hive.query.id}.log


http://www.zhongyajixie.com/news/201.html

相关文章:

  • 广州网站建设类岗位seo百度seo排名优化软件
  • 男科医院网站建设网店运营工资一般多少
  • 高端网站建设公司排行2020国内十大小说网站排名
  • 技术支持 东莞网站建设机械加工湖南疫情最新消息
  • 网站静态化怎么做永久免费国外域名注册
  • 来年做哪些网站能致富百度推广排名怎么做的
  • 建设网站跟服务器得关系数字营销服务商seo
  • 网站建设 中企动力中山最知名的网站推广公司
  • 投资建设个什么网站好seo关键词推广优化
  • 大鹏新区网站建设成都seo优化外包公司
  • 做网站前途如何百度地图排名可以优化吗
  • 长沙做网站最好的公司百度知道登录
  • 今日香港头条新闻推广seo优化公司
  • 刚成立公司如何做网站长春网站优化指导
  • 上行30m可以做网站吗整站优化加盟
  • 公司汇报网站建设方案如何快速推广一个新产品
  • 网站建设经费劳动局免费培训项目
  • 如何做公司建网站方案给公司百度营销推广登录平台
  • 金泉网站建设开发网络营销策划方案书范文
  • 西安千叶网站建设百度商务合作电话
  • 淘宝导购网站源码完美动力培训价格表
  • wordpress 消耗 资源湖南优化电商服务有限公司
  • 建设工程鲁班奖公示网站知乎营销推广
  • 天津做网站公司北京营销推广公司
  • 2018春节放假安排 网站建设深圳seo推广外包
  • 一个人做网站要多久河南制作网站公司
  • 网站管理助手建站网站设计公司上海
  • 给单位建设网站seo关键词首页排名
  • 做网站和软件有区别吗seo咨询
  • 3. 是网站建设的重点微营销平台系统