当前位置: 首页 > news >正文

玉树电子商务网站建设哪家好百度排行榜小说

玉树电子商务网站建设哪家好,百度排行榜小说,如何做网站品类,四川建筑人才网目录 环境配置 实验1 数据 作业2 环境配置 实验开始前先配置环境 以实验室2023安装的版本为例: 1、安装anaconda:(anaconda自带Python,安装了anaconda就不用再安装Python了) 下载并安装 Anaconda3-2022.10-Windows-x86_64.ex…

目录

环境配置

实验1 数据

作业2


环境配置

实验开始前先配置环境

以实验室2023安装的版本为例:

1、安装anaconda:(anaconda自带Python,安装了anaconda就不用再安装Python了
下载并安装 Anaconda3-2022.10-Windows-x86_64.exe

镜像站下载地址(点击即可)

自己选择安装路径,其他使用默认选项。

(1)在“Advanced Installation Options”中,
勾选“Add Anaconda3 to my PATH environment variable.”(“添加Anaconda至我的环境变量。”)。

(2)勾选“Register Anaconda3 as my default Python 3.9”。

 

2、安装pycharm(在官网安装社区版就够用了

pycharm官网

下载并安装 pycharm-community-2022.2.4.exe 

3、打开cmd窗口,输入以下命令

conda create -n  DMEv  pip python=3.8

 记住DMEV所在的磁盘路径C:\Users\dell\.conda\envs\DMEV

# 如需删除环境,使用命令

conda remove -n DMEv    --all

 安装要用到的Python库:

activate   DMEv  
pip install numpy==1.20.0 --index-url https://mirrors.aliyun.com/pypi/simple/
pip install matplotlib==3.3.4 --index-url https://mirrors.aliyun.com/pypi/simple/
pip install opencv_python==4.4.0.40 --index-url https://mirrors.aliyun.com/pypi/simple/
pip install scipy==1.6.0 --index-url https://mirrors.aliyun.com/pypi/simple/
pip install scikit-learn==0.24.1 --index-url https://mirrors.aliyun.com/pypi/simple/ 
pip install h5py==2.10.0 --index-url https://mirrors.aliyun.com/pypi/simple/ 
pip install mnist==0.2.2 --index-url https://mirrors.aliyun.com/pypi/simple/ 


4、测试

在Pycharm中创建项目时,DMEV所在的路径下选择python.exe(和上面配置的对应)


在Pycharm中新建项目,配置 interpreter,运行以下代码:(没有报错,则导入成功

import cv2 as cv
import numpy as np
from sklearn.decomposition import PCA
import mnist
import matplotlib.pyplot as plt 

实验1 数据

一、实验目的

(1)练习和掌握python的基本使用。

(2)理解数据类型、数据质量、数据预处理、相似性和相异性度量的概念

(3)理解各种相似性和相异性度量(测度)及其含义,并且能编程计算。

二、实验内容

1编程实现任意给定两个相同维度的向量之间的欧氏距离计算函数dist_E(x,y)。

输入:两个任意k维向量x和y,其中k的值随由数据决定。如x=[3,20,3.5], y=[-3,34,7]。

import numpy as npdef dist_E(vect1, vect2):return np.sqrt(sum(np.power((vect1-vect2),2)))if __name__ == "__main__":x=np.array([3,20,3.5])y=np.array([-3,34,7])dist=dist_E(x,y)print(dist)

2编程实现任意给定两个相同维度的向量之间的夹角余弦相似度计算函数sim=sim_COS(x,y)。输入:两个任意k维向量x和y,其中k的值由数据决定。

import numpy as npdef sim_COS(x, y):num = x.dot(y.T)denom = np.linalg.norm(x) * np.linalg.norm(y)return num / denomif __name__ == "__main__":x=np.array([3, 2, 0, 5, 0, 0, 0, 2, 0, 0])y=np.array([1, 0, 0, 0, 0, 0, 0, 1, 0, 2])sim=sim_COS(x,y)print(sim)

3编程实现任意给定两个相同维度的布尔向量之间的Jaccard系数计算函数dist1=dist_Jaccard(x,y)。

import numpy as npdef sim_Jaccard(vect1, vect2):sim=-1if(vect1.size!=vect2.size):print("length of input vectors must agree")else:ind1=np.logical_and(vect1==1,vect2==1)ind2=np.logical_or(vect1==1,vect2==1)x=vect1[ind1]y=vect2[ind2]n1=np.size(x)n2=np.size(y)sim=n1/n2return simif __name__ == "__main__":x=np.array([1, 0, 0, 0, 0, 0, 1, 0, 0, 0])y=np.array([1, 0, 0, 0, 0, 0, 0, 0, 0, 1])dist=sim_Jaccard(x,y)print(dist)

4编程实现任意给定两个相同维度的布尔向量之间的简单匹配系数计算函数dist1=dist_SMC(x,y)。

import numpy as npdef sim_SMC(vect1, vect2):sim = -1if (vect1.size != vect2.size):print("length of input vectors must agree")else:ind0 = np.logical_and(vect1 == 0, vect2 == 0)ind1 = np.logical_and(vect1 == 1, vect2 == 1)ind2 = np.logical_or(vect1 == 1, vect2 == 1)x = vect1[ind1]y = vect1[ind2]z=vect1[ind0]n1 = np.size(x)n2 = np.size(y)n3 = np.size(z)sim = (n1+n3) / (n2+n3)return simif __name__ == "__main__":x=np.array([1, 0, 0, 0, 0, 0, 1, 0, 0, 0])y=np.array([1, 0, 0, 0, 0, 0, 0, 0, 0, 1])dist=sim_SMC(x,y)print(dist)

作业2

1.数据的属性已知,数据的类别也已知,这样的数据叫做___________样本

我的答案:训练

2.数据的属性已知,数据的类别未知,这样的数据叫做___________样本

我的答案:测试

3.在最近邻分类算法中,可以通过KD树来加速k近邻的搜索。

我的答案:

4.已知有5个训练样本,分别为

样本1,属性为:[2,0,2]  类别 0

样本2,属性为:[1,5,2]  类别 1

样本3,属性为:[3,2,3]   类别 1

样本4,属性为:[3,0,2]   类别  0

样本5,属性为:[1,0,6]   类别 0

有1个测试样本,属性为:[1,0,2]

(1) 测试样本到5个训练样本(样本1、2、3、4、5)的欧氏距离依次为: ()()()()()。    

我的答案:1、5、3、2、4

(2) K=3,距离测试样本最近的k个训练样本依次为:样本  ()    、样本  ()  、样本 ()     

我的答案:1、4、3

(3)距离最近的k个训练样本类别依次为:类别()、类别()、类别()

我的答案:0、0、1

(4) KNN算法得到的测试样本的类别为:类别 ()

我的答案:0

未完待续

http://www.zhongyajixie.com/news/18072.html

相关文章:

  • app下载链接兰州seo关键词优化
  • 时事新闻2022最新10月上海关键词优化排名哪家好
  • 企业加强网站建设的必要性windows优化大师收费
  • 怎么投诉网站制作公司上海百度公司地址在哪里
  • wordpress无头像昵称评论南阳本地网络推广优化公司
  • 公司代办注册要多少钱seo流量优化
  • iis配置静态网站惠州关键词排名提升
  • 企业网站优化托管网站seo优化多少钱
  • 丹东淘宝做网站服装网络营销策划书
  • php做网站多少钱广东广州网点快速网站建设
  • 吉安哪家做网站的公司好电子商务与网络营销题库
  • 陕西咸阳做网站的公司免费推广的app有哪些
  • 高端网站制作哪家好搭建网站教程
  • 企业销售网站网站建设合同
  • 招聘网站模板页牛奶软文广告营销
  • 哪个公司的网站做的好全网营销与seo
  • 域名绑定ip网站吗百度收录怎么做
  • 自己做一个app难吗福州外包seo公司
  • 快站优惠券app有友情链接的网站
  • 创新型的赣州网站建设深圳头条新闻
  • wordpress阿里巴巴国际站线上推广员是做什么的
  • 企业网站建设公司网络服务微博指数查询入口
  • 在唐山做网站多少钱网络宣传方式
  • 文章 百度网站创建及发展历史优化大师是什么
  • 有经验的赣州网站建设seo网站推广软件
  • 论文中小企业的网站建设济南做网站推广哪家好
  • 免费注册域名流程武汉seo排名
  • 织梦cms做网站什么是seo站内优化
  • 网站建设主要包括前台和后台种子搜索神器在线引擎
  • 福州网站制作外包2021年热门关键词