当前位置: 首页 > news >正文

做网站的如何兼职创建一个网站

做网站的如何兼职,创建一个网站,wordpress关闭google字体,营销型网站建设的特点数据准备 CIFAR-10 and CIFAR-100 datasets (toronto.edu)在上述网站中下载Python版本的CIFAR-10数据集。 下载后的压缩包解压后会得到几个文件如下: 对应的data_batch_1 ~ data_batch_5 是划分好的训练数据,每个文件里包含10000张图片,test…

数据准备

CIFAR-10 and CIFAR-100 datasets (toronto.edu)在上述网站中下载Python版本的CIFAR-10数据集。

下载后的压缩包解压后会得到几个文件如下:

对应的data_batch_1 ~ data_batch_5 是划分好的训练数据,每个文件里包含10000张图片,test_batch 是测试集数据,也包含10000张图片。他们的结构是一样的,需要分别对这些data_bach进行处理。

查阅相关文献可知,对应的data_batch都是使用的pickle库进行处理获得的。所以在处理该文件时,也需要使用pickle库进行读取。

编写一段代码脚本,将原来文件拆解成图片,并将训练集图片与测试集图片分别保存在train和test文件夹中可以得到如下图所示结果。

如上图所示,可知对应的训练集数据为5万张,测试集数据为1万张。

对应代码运行结果如下图所示

TIP:其他可选方案,其实torchvision库中的CIFAR库是可以直接加载的。使用代码torchvision.datasets.CIFAR10就可以直接调用库中的数据集。在此,直接下载完全部图片后再进行处理,会更加方便。

torchvision.datasets.CIFAR10用于加载 CIFAR-10 数据集。参数包括:

root:数据集存放的根目录。

train:True 表示加载训练集,False 表示加载测试集。

download:是否下载数据集,如果设置为 True,数据集将会被自动下载到 root 目录下。

transform:用于对数据进行转换的操作。

对上述数据集中数据进行归一化、图像增强等操作。

import torchvision.transforms as transforms# 定义图像预处理操作
transform_train = transforms.Compose([transforms.RandomCrop(32, padding=4),  # 随机裁剪,数据增强transforms.RandomHorizontalFlip(),  # 随机水平翻转,数据增强transforms.ToTensor(),  # 转换为张量transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))  # 归一化
])

使用随机裁剪、水平翻转技术进行数据增强操作,提高后续模型的特征提取能力。

模型构建

使用 PyTorch 构建卷积神经网络模型。设计合适的网络结构,包括卷积层、池化层、全连接层等。搭建的卷积神经网络结构图如下所示

import torch
from torch import nn
from torch.nn import Sequential, Conv2d, MaxPool2d, Linear, Flattenclass Module(nn.Module):def __init__(self):super(Module, self).__init__()self.model1 = Sequential(  # 效果同上Conv2d(3, 32, 5, padding=2),MaxPool2d(2),Conv2d(32, 32, 5, padding=2),MaxPool2d(2),Conv2d(32, 64, 5, padding=2),MaxPool2d(2),Flatten(),Linear(1024, 64),Linear(64, 10))def forward(self, x):x = self.model1(x)return xif __name__ == '__main__':# 验证网络正确性model = Module()input = torch.ones((64, 3, 32, 32))output = model(input)print(output.shape)  # torch.Size([64, 10])

该卷积神经网络包含了一个卷积层 (Conv2d),输入通道数为3,输出通道数为32,卷积核大小为5x5,使用零填充(padding=2)。一个最大池化层 (MaxPool2d),池化窗口大小为2x2。另一个卷积层,输入通道数为32,输出通道数为32,卷积核大小为5x5,同样使用零填充。另一个最大池化层,池化窗口大小为2x2。还有一个卷积层,输入通道数为32,输出通道数为64,卷积核大小为5x5,零填充。再接一个最大池化层,池化窗口大小为2x2。

然后是将特征展平的层 (Flatten),用于将卷积层输出的特征张量展平成一维向量。

接着是一个全连接层 (Linear),输入大小为1024,输出大小为64。

最后是另一个全连接层,输入大小为64,输出大小为10。这里的10代表着输出类别的数量。

后面函数解释:

def forward(self, x)是模型的前向传播函数,定义了数据从输入到输出的流程。

x = self.model1(x):这里将输入数据 x 输入到 model1 中,进行前向传播计算。

return x:返回模型的输出结果。

if __name__ == '__main__'::这是Python中的常用写法,用于判断当前脚本是否作为主程序执行。

model = Module():创建了一个模型对象 model,实例化了前面定义的 Module 类。

input = torch.ones((64, 3, 32, 32)):创建了一个大小为64x3x32x32的张量作为输入数据,表示64个样本,每个样本的图像大小为32x32,通道数为3(假设是RGB图像)。

output = model(input):将输入数据输入到模型中进行前向传播计算,得到输出结果。

print(output.shape):打印输出结果的形状,这里输出的形状为 torch.Size([64, 10]),表示有64个样本,每个样本对应一个长度为10的输出向量,其中每个元素表示对应类别的预测分数或概率。

对应构建的卷积神经网络结构图如下图所示:

模型训练

定义损失函数和优化器。将数据集分为训练集和验证集。在训练集上训练模型,通过验证集调整模型参数,避免过拟合。

# 6损失函数
loss_fn = nn.CrossEntropyLoss()# 7优化器
learning_rate = 1e-2
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)# 8设置训练网络的一些参数
total_train_step = 0  # 记录训练次数
total_test_step = 0  # 记录测试次数
epoch = 10  # 训练的轮数

损失函数、优化器如上所示,损失函数使用交叉熵损失函数,优化器中学习率learning rate为0.01,优化器使用SGD优化器。

模型评估

使用测试集评估模型性能,计算准确率等指标。

随着训练次数增加,模型在测试集上面的整体损失LOSS一直在下降,正确率一直在提升。训练准确率在第34轮训练时到达66.7%

可视化展示

通过表格展示准确率等实验结果。绘制准确率和损失函数随训练轮次变化的曲线图。随机选取部分图像,展示模型的预测结果和真实标签。

此处的可视化使用了tensorboard展示板结合日志文件进行展示

tensorboard --logdir=logs

logs代表着日志文件对应的文件夹所在位置

使用上面代码进行读取代码运行产生的日志文件。

TIP:日志文件所在的文件夹路径中不能存在中文路径,否则会报错。

import torch
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
from torchvision.datasets import CIFAR10
import matplotlib.pyplot as plt
import numpy as np# 加载测试数据集
test_data = CIFAR10(root="data", train=False, transform=transforms.ToTensor(), download=True)
test_loader = DataLoader(test_data, batch_size=16, shuffle=True)# 定义类别名称
classes = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']# 加载模型
model = torch.load(r"C:\Users\Lenovo\Desktop\计算机视觉实验\实验2\CIFAR-10\200轮训练权重\model_34.pth")  # 假设模型保存在 model.pth 中# 设置模型为评估模式
model.eval()# 从测试数据集中随机选择一批图像和标签
images, labels = next(iter(test_loader))# 对图像进行预测
with torch.no_grad():outputs = model(images)_, predicted = torch.max(outputs, 1)# 将图像、预测结果和真实标签组合在一起并展示
fig, axes = plt.subplots(4, 4, figsize=(12, 12))
for i, ax in enumerate(axes.flat):image = images[i].permute(1, 2, 0)  # 将图像从 (C, H, W) 转换为 (H, W, C)label = labels[i]prediction = predicted[i]ax.imshow(image)ax.axis('off')ax.set_title(f'Predicted: {classes[prediction]}, Actual: {classes[label]}',fontsize=10)plt.show()

识别效果如上图所示.

http://www.zhongyajixie.com/news/14012.html

相关文章:

  • 手机网站建设服务合同范本seo搜索优化是什么意思
  • 海南省住房建设厅网站黄金网站软件免费
  • 网络规划与设计报告东莞seo建站排名
  • 苏州做网站的公司排名数据分析软件
  • 南京网站制作哪家好seo优化方案项目策划书
  • 我国网站无障碍建设仍处于站长工具收录查询
  • php 网站制作的意义信阳网络推广公司
  • wordpress如何做301跳转手机网站seo免费软件
  • 网站制作体会营销比较好的知名公司有哪些
  • 网站做ppt模板下载地址hao123上网从这里开始官方
  • 潍坊关键词优化服务seo一个月工资一般多少
  • 成品网站1688入口中国教育培训网
  • 设计官方网站百度关键词指数工具
  • 厦门橄榄网站建设夸克搜索引擎
  • 线上平面设计哪家培训好如何优化网站快速排名
  • 怎么做一张图片的网站可以搜索国外网站的搜索引擎
  • 哪个网站做x展架比较好 知乎长春seo推广
  • 千素网站建设搜索引擎优化的流程
  • asp医院网站源码网站seo谷歌
  • 网站建设需要什么样的内容什么是百度竞价排名
  • 建设一个招聘网站排名优化方案
  • 怎么做网站才能不被仿冒磁力搜索引擎torrentkitty
  • 美食网站设计方案国际域名注册网站
  • wordpress切换语言旅游seo整站优化
  • 没有文章更新的网站怎么做优化免费建网页
  • C4D有哪些做模型的网站电商平台app大全
  • submit怎么做网站长沙seo排名扣费
  • 电商网站设计思想网站怎么优化关键词排名
  • 武强网站建设怎么制作网站
  • 青岛市网站建设公司自己如何注册一个网站