当前位置: 首页 > news >正文

哪些网站用.ren域名国内优秀网页设计赏析

哪些网站用.ren域名,国内优秀网页设计赏析,ifm网站做啥的,从化市营销型网站建设目录 32. 最长有效括号思路代码 300. 最长递增子序列思路代码 674. 最长连续递增序列思路1:双指针代码1:双指针思路2:dp代码2:dp 718. 最长重复子数组思路1:dp代码1:dp思路2:dp优化代码2&#x…

目录

  • 32. 最长有效括号
    • 思路
    • 代码
  • 300. 最长递增子序列
    • 思路
    • 代码
  • 674. 最长连续递增序列
    • 思路1:双指针
    • 代码1:双指针
    • 思路2:dp
    • 代码2:dp
  • 718. 最长重复子数组
    • 思路1:dp
    • 代码1:dp
    • 思路2:dp优化
    • 代码2:dp优化
  • 1143. 最长公共子序列
    • 思路
    • 代码
  • 1035. 不相交的线(最大连线数)
    • 思路
    • 代码
  • 53. 最大子序和
    • 思路1:贪心
    • 代码1:贪心
    • 思路2:dp
    • 代码2:dp

32. 最长有效括号

题目🔗

给你一个只包含 '('')' 的字符串,找出最长有效(格式正确且连续)括号子串的长度。

示例 1
输入:s = "(()"
输出:2
解释:最长有效括号子串是 "()"
示例 2
输入:s = ")()())"
输出:4
解释:最长有效括号子串是 "()()"
示例 3
输入:s = ""
输出:0

思路

首先,我们定义一个dp数组,表示以第i个元素结尾的字符串的最长有效括号的长度。

对于dp[i]来说,它可能有以下两种情况:

  • s[i] == '(':这时他是无法和前面的括号组成有效括号对的,所以dp[i] = 0
  • s[i] == ')':这时我们需要确定它是否能和前面的元素组成有效括号对,那么还需要去观察s[i-1]
    • s[i-1] == '('s[i-1]刚好和s[i]组成一对有效括号,长度为2。那么这种情况下我们可以推导出: d p [ i ] = d p [ i − 2 ] + 2 dp[i] = dp[i-2] + 2 dp[i]=dp[i2]+2
    • s[i-1] == ')':对于这种情况来说,我们不知道s[i-1]是否和前面的元素组成有效括号,但无论如何,dp[i-1]中存放的总是以s[i-1]结尾的字符串的最长有效括号长度。假设s[i-1]是有效的括号对之一,那么与他配对的括号index就是i-dp[i-1],于是乎我们就可以找到和s[i]配对的位置i-dp[i-1]-1,这样如果s[i-dp[i-1]-1] == '(',那么s[i]就能与他配对上。那么我们就可以推导出: d p [ i ] = d p [ i − 1 ] + 2 + d p [ i − d p [ i − 1 ] − 2 ] dp[i] = dp[i-1] + 2 + dp[i-dp[i-1]-2] dp[i]=dp[i1]+2+dp[idp[i1]2]

注意,上面要需要加上 d p [ i − d p [ i − 1 ] − 2 ] dp[i-dp[i-1]-2] dp[idp[i1]2],这是因为如果我们判定s[i-dp[i-1]-1] == '('s[i]配对的话,还需要考虑s[i-dp[i-1]-1]之前的情况。

代码

class Solution {
public:int longestValidParentheses(string s) {vector<int> dp(s.size(), 0);int ans = 0;for(int i = 1; i < s.size(); ++i){if(s[i] == ')'){// 前面一个是(的情况,直接配对成功if(s[i - 1] == '('){dp[i] = 2;// 加上前面配对的数量if(i - 2 >= 0) dp[i] += dp[i - 2];}// 前面一个也是),但是有配对的else if(dp[i - 1] > 0){// 判断匹配位置的符号是不是(,如果是则可以配对if((i - dp[i - 1] - 1) >= 0 && s[i - dp[i - 1] - 1] == '('){dp[i] = dp[i - 1] + 2;// 加上前面配对的数量if(i - dp[i - 1] - 2 >= 0) dp[i] += dp[i - dp[i - 1] - 2];}}}ans = max(ans, dp[i]);}return ans;}
};

300. 最长递增子序列

题目🔗

给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。

子序列是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。

示例 1
输入:nums = [10,9,2,5,3,7,101,18]
输出:4
解释:最长递增子序列是 [2,3,7,101],因此长度为 4
示例 2
输入:nums = [0,1,0,3,2,3]
输出:4
示例 3
输入:nums = [7,7,7,7,7,7,7]
输出:1

思路

dp[i]表示第i个数为结尾的子序列的最长严格递增长度。

很容易的就能想到,我们要计算的dp[i]一共有两种情况:
- nums[i] > nums[i - 1]:此时dp[i] = dp[i-1] + 1
- nums[i] < nums[i - 1]:此时dp[i] = dp[i-1]

但是如果我们简单的将代码写成这样:

int lengthOfLIS(vector<int>& nums) {vector<int> dp(nums.size(), 1);for(int i = 1; i < nums.size(); ++i){if(nums[i] > nums[i - 1])dp[i] = dp[i - 1] + 1;else dp[i] = dp[i-1];}return dp[nums.size()-1];}

当测试用例为:nums = [4,10,4,3,8,9]。我们打印出上面代码计算出的dp数组:1 2 2 2 3 4 。可以发现并不是我们所期望的那样,当i=4时,dp[4]应该为2,而不是3

我们计算成3是因为:对于子数组[4,10,4,3]来说,它的最大递增子序列为4, 10。我们如果只是简单的判断nums[4] > nums[3],就执行dp[i] = dp[i - 1] + 1,那么就相当于是把4, 10, 8当成了最大递增子序列,然而它并不是的,所以这里就出现了判断失误。

正确的做法是,我们要把dp[i]定义为第i个数为结尾的子数组的最长严格递增长度,并且该最长严格递增子序列最后一个数必定是nums[i]

每次进行判断的时候,我们要对该子数组各个位置nums[j]进行遍历,并比较与nums[i]的大小,如果nums[i] > nums[j],那么就有dp[i] = max(dp[i], dp[j] + 1)

最终答案就是dp数组中最大的那个数。

代码

class Solution {
public:int lengthOfLIS(vector<int>& nums) {vector<int> dp(nums.size(), 1);int ans = 1;for(int i = 1; i < nums.size(); ++i){for(int j = 0; j < i; ++j){if(nums[i] > nums[j])dp[i] = max(dp[i], dp[j] + 1);}ans = max(ans, dp[i]);}return ans;}
};

674. 最长连续递增序列

题目🔗

给定一个未经排序的整数数组,找到最长且 连续递增的子序列,并返回该序列的长度。

连续递增的子序列 可以由两个下标 lrl < r)确定,如果对于每个 l <= i < r,都有 nums[i] < nums[i + 1] ,那么子序列 [nums[l], nums[l + 1], ..., nums[r - 1], nums[r]] 就是连续递增子序列。

示例 1
输入:nums = [1,3,5,4,7]
输出:3
解释:最长连续递增序列是 [1,3,5], 长度为3
尽管 [1,3,5,7] 也是升序的子序列, 但它不是连续的,因为 57 在原数组里被 4 隔开。
示例 2
输入:nums = [2,2,2,2,2]
输出:1
解释:最长连续递增序列是 [2], 长度为1

思路1:双指针

定义两个指针:int slowint fast

代码1:双指针

class Solution {
public:int findLengthOfLCIS(vector<int>& nums) {int slow = 0;int ans = 0;while(slow < nums.size()){int fast = slow + 1;while(fast < nums.size() && nums[fast] > nums[fast - 1]){fast++;}ans = max(ans, fast - slow);slow = fast;}return ans;}
};

思路2:dp

dp的思路和上题类似。我们定义一个dp数组,dp[i]表示第i个数为结尾的子数组的最长连续递增长度,并且该最长连续递增序列最后一个数必定是nums[i]

与上题不一样的就是我们不在需要遍历子数组了,直接判断nums[i]nums[i - 1]的大小即可。

代码2:dp

class Solution {
public:int findLengthOfLCIS(vector<int>& nums) {vector<int> dp(nums.size(), 1);int ans = 1;for(int i = 1; i < nums.size(); ++i){if(nums[i] > nums[i - 1]){dp[i] = max(dp[i], dp[i - 1] + 1);}ans = max(ans, dp[i]);}return ans;}
};

718. 最长重复子数组

题目🔗

给两个整数数组 nums1nums2 ,返回 两个数组中 公共的 、长度最长的子数组的长度 。

示例 1
输入:nums1 = [1,2,3,2,1], nums2 = [3,2,1,4,7]
输出:3
解释:长度最长的公共子数组是 [3,2,1]
示例 2
输入:nums1 = [0,0,0,0,0], nums2 = [0,0,0,0,0]
输出:5

思路1:dp

dp[i][j]表示数组nums1i个元素数组nums2j个元素的最长公共子数组的长度。其实也是和上题一样的。

代码1:dp

我们可以很快写出代码:

class Solution {
public:int findLength(vector<int>& nums1, vector<int>& nums2) {vector<vector<int>> dp(nums1.size(), vector<int>(nums2.size(), 0));int ans = 0;// dp数组初始化for(int i = 0; i < nums1.size(); ++i){if(nums2[0] == nums1[i]) dp[i][0] = 1;if(dp[i][0] > ans) ans = dp[i][0];}for(int j = 0; j < nums2.size(); ++j){if(nums1[0] == nums2[j]) dp[0][j] = 1;if(dp[0][j] > ans) ans = dp[0][j];}// dp数组推导for(int i = 1; i < nums1.size(); ++i){for(int j = 1; j < nums2.size(); ++j){if(nums1[i] == nums2[j])dp[i][j] = dp[i - 1][j - 1] + 1;if(dp[i][j] > ans) ans = dp[i][j];}}return ans;}
};

注意初始化的时候我们也要去更新ans的大小,不然会漏结果。

思路2:dp优化

其实,我们可以将dp[i][j]定义为数组nums1i-1个元素数组nums2j-1个元素的最长公共子数组的长度,也就是在nums1前增加一行,nums2前增加一列:
在这里插入图片描述
这样我们在定义数组的时候就已经初始化好了,不必额外去for循环初始化:vector<vector<int>> dp (nums1.size() + 1, vector<int>(nums2.size() + 1, 0));

代码2:dp优化

class Solution {
public:int findLength(vector<int>& nums1, vector<int>& nums2) {vector<vector<int>> dp(nums1.size() + 1, vector<int>(nums2.size() + 1, 0));int ans = 0;// dp数组推导for(int i = 1; i <= nums1.size(); ++i){for(int j = 1; j <= nums2.size(); ++j){if(nums1[i - 1] == nums2[j - 1])dp[i][j] = dp[i - 1][j - 1] + 1;if(dp[i][j] > ans) ans = dp[i][j];}}return ans;}
};

1143. 最长公共子序列

题目🔗

给定两个字符串 text1text2,返回这两个字符串的最长 公共子序列 的长度。如果不存在 公共子序列 ,返回 0

一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。

例如,"ace""abcde" 的子序列,但 "aec" 不是 "abcde" 的子序列。
两个字符串的 公共子序列 是这两个字符串所共同拥有的子序列。

示例 1
输入:text1 = "abcde", text2 = "ace"
输出:3
解释:最长公共子序列是 "ace" ,它的长度为 3
示例 2
输入:text1 = "abc", text2 = "abc"
输出:3
解释:最长公共子序列是 "abc" ,它的长度为 3
示例 3
输入:text1 = "abc", text2 = "def"
输出:0
解释:两个字符串没有公共子序列,返回 0

思路

这题和上题的不同之处在于 公共子序列原字符串相对有序的。感觉这题有点像300. 最长递增子序列718. 最长重复子数组的结合体。

上一题以i-1j-1是因为子数组必须要求是连续的,如果不连续,公共子数组直接归零,下一个子数组不能继承前一个子数组的公共子数组长度。

子序列则不一样,允许中间有间隔,下一个子序列可以继承前一个子序列的公共子序列长度

这样说很抽象,我们举个例子。比如说两个数组nums1 = [1,2,3,4,5], nums2 = [1,2,3,8,5] 。在index=3的时候出现分歧了,如果是公共子数组,index=3时,其公共子数组必须要归零,如果不归零,会影响index=4的判断。而如果是公共子序列,index=3可以保留index=2的最长子序列数,继而在index=4时继续递增。

代码

class Solution {
public:int longestCommonSubsequence(string text1, string text2) {int len1 = text1.size();int len2 = text2.size();vector<vector<int>> dp(len1 + 1, vector<int>(len2 + 1, 0));for(int i = 1; i <= len1; ++i){for(int j = 1; j <= len2; ++j){if(text1[i - 1] == text2[j - 1]){dp[i][j] = dp[i - 1][j - 1] + 1;}else{dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);}}}return dp[len1][len2];}
};

1035. 不相交的线(最大连线数)

题目🔗

在两条独立的水平线上按给定的顺序写下 nums1nums2 中的整数。

现在,可以绘制一些连接两个数字 nums1[i]nums2[j] 的直线,这些直线需要同时满足:

  • nums1[i] == nums2[j]
  • 且绘制的直线不与任何其他连线(非水平线)相交。
    请注意,连线即使在端点也不能相交:每个数字只能属于一条连线。

以这种方法绘制线条,并返回可以绘制的最大连线数。

示例 1
在这里插入图片描述
输入:nums1 = [1,4,2], nums2 = [1,2,4]
输出:2
解释:可以画出两条不交叉的线,如上图所示。 但无法画出第三条不相交的直线,因为从 nums1[1]=4nums2[2]=4 的直线将与从 nums1[2]=2nums2[1]=2 的直线相交。
示例 2
输入:nums1 = [2,5,1,2,5], nums2 = [10,5,2,1,5,2]
输出:3
示例 3
输入:nums1 = [1,3,7,1,7,5], nums2 = [1,9,2,5,1]
输出:2

思路

1143. 最长公共子序列一模一样。

代码

class Solution {
public:int maxUncrossedLines(vector<int>& nums1, vector<int>& nums2) {int len1 = nums1.size();int len2 = nums2.size();vector<vector<int>> dp(len1 + 1, vector<int>(len2 + 1, 0));for(int i = 1; i <= len1; ++i){for(int j = 1; j <= len2; ++j){if(nums1[i - 1] == nums2[j - 1]){dp[i][j] = dp[i - 1][j - 1] + 1;}else{dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);}}}return dp[len1][len2];}
};

53. 最大子序和

题目🔗

给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
子数组是数组中的一个连续部分。

示例 1
输入:nums = [-2,1,-3,4,-1,2,1,-5,4]
输出:6
解释:连续子数组 [4,-1,2,1] 的和最大,为 6
示例 2
输入:nums = [1]
输出:1
示例 3
输入:nums = [5,4,-1,7,8]
输出:23

思路1:贪心

因为数组中包含负数,所以会拉低连续子数组的和,甚至变为负数,这个时候就说明从前面计算到这里的负数,再继续计算下去肯定只会越来越小,所以我们要放弃前面的元素,从下一个元素开始重新计算。每次计算的时候我们都要记录更大的连续和,最后得到的就是全局最优的最大连续和。

代码1:贪心

class Solution {
public:int maxSubArray(vector<int>& nums) {int result = INT32_MIN;int count = 0;for(int i = 0; i < nums.size(); i++) {count += nums[i];if(count > result) result = count;if(count <= 0) count = 0;}return result;}
};

思路2:dp

dp[i]表示以nums[i-1]为结尾的最大子数组的和为dp[i]

对于每个dp[i]都有两种情况:

  • nums[i-1]加入到前面的子数组中,也就是dp[i] = dp[i - 1] + nums[i - 1]
  • nums[i-1]不加入到前面的子数组中,从它这里重新开始计算和,也就是dp[i] = numd[i - 1]
  • 我们取最大的值:dp[i] = max(nums[i - 1], dp[i - 1] + nums[i - 1])

代码2:dp

class Solution {
public:int maxSubArray(vector<int>& nums) {vector<int> dp(nums.size() + 1, 0);int ans = INT_MIN;for(int i = 1; i <= nums.size(); ++i){dp[i] = max(nums[i - 1], dp[i - 1] + nums[i - 1]);if(dp[i] > ans) ans = dp[i];}return ans;}
};
http://www.zhongyajixie.com/news/13774.html

相关文章:

  • 阿里云官方网站 icp代备案管理系统国内网络推广渠道
  • 网站在哪做网络推广怎么做
  • 做电影小视频在线观看网站关键词歌词简谱
  • 如何做色流量网站系统推广公司
  • WordPress突然全站404电子商务营销方法
  • wordpress模板网站b站推广怎么买
  • 做织梦网站时图片路径显示错误外链网盘下载
  • 阜阳网站建设公司长春seo
  • 福建漳州网站建设费用seo外链工具源码
  • 网站的功能和作用是什么广州推广系统
  • 网站包括什么东莞互联网推广
  • wordpress商业版廊坊seo排名外包
  • 什么是网站建设与优化seo包括哪些方面
  • 做订票网站设计要多久什么推广方式能快速引流
  • 做污水处理的 登录哪个网站秦皇岛seo排名
  • wordpress 宕机原因哈尔滨seo优化培训
  • 国外时尚设计网站爱站网关键词挖掘查询工具
  • 郑州门户网站建设近期时事新闻10条
  • 池州哪里做网站seo优化大公司排名
  • 网站建设的原因seo软件排行榜前十名
  • 建个网站 费用如何在互联网推广自己的产品
  • 网店网站建设策划书案例百度url提交
  • 网监备案网站更换域名org域名注册
  • 改变字体颜色的网站网站域名怎么查询
  • 成都网站制作公司报价广告投放是做什么的
  • 帮公司做网站赚钱吗免费域名注册官网
  • 网站备案密码使用软文代发平台
  • 免费推广选择推广途径与原因seo优化培训多少钱
  • 制作网站的公司办什么营业执照广东seo推广
  • 大学网页设计与制作作业网站seo的优化怎么做