当前位置: 首页 > news >正文

质量好网站建设商家seo搜索引擎优化工资薪酬

质量好网站建设商家,seo搜索引擎优化工资薪酬,移动端商城网站开发,平安网站做的太差温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 作者简介:Java领…

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

作者简介:Java领域优质创作者、CSDN博客专家 、CSDN内容合伙人、掘金特邀作者、阿里云博客专家、51CTO特邀作者、多年架构师设计经验、多年校企合作经验,被多个学校常年聘为校外企业导师,指导学生毕业设计并参与学生毕业答辩指导,有较为丰富的相关经验。期待与各位高校教师、企业讲师以及同行交流合作

主要内容:Java项目、Python项目、前端项目、PHP、ASP.NET、人工智能与大数据、单片机开发、物联网设计与开发设计、简历模板、学习资料、面试题库、技术互助、就业指导等

业务范围:免费功能设计、开题报告、任务书、中期检查PPT、系统功能实现、代码编写、论文编写和辅导、论文降重、长期答辩答疑辅导、腾讯会议一对一专业讲解辅导答辩、模拟答辩演练、和理解代码逻辑思路等。

收藏点赞不迷路  关注作者有好处

                                         文末获取源码

感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人

介绍资料

开题报告

题目:Python+CNN卷积神经网络考研院校推荐系统 考研分数线预测

一、研究背景与意义

研究生入学考试(考研)是许多大学毕业生追求深造的重要途径。随着考研人数的逐年增加,考生在选择研究生专业和院校时面临的选择也日益复杂。为了帮助考生更好地选择适合自己的研究生专业和院校,开发一个高效的考研推荐系统显得尤为重要。该系统旨在通过数据分析和可视化技术,为考生提供基于数据的研究生专业和院校推荐,同时预测考研分数线,帮助他们更好地规划自己的学术生涯。

二、研究目标与内容

  1. 研究目标

    • 开发一个基于Python和CNN卷积神经网络的考研院校推荐系统。
    • 实现考研分数线的预测功能。
    • 为考生提供个性化的研究生专业和院校推荐服务。
  2. 研究内容

    • 数据采集与处理:使用Python编写爬虫程序,并行爬取研究生院校的基本信息和历年考研数据,包括学校名称、地理位置、专业设置、报考人数、录取人数、专业录取分数线等。对采集到的数据进行清洗、补全、整合和转换,确保数据的质量和一致性。
    • 模型构建与训练:基于学校评分、收藏数据等,构建基于CNN卷积神经网络的推荐模型,用于预测和推荐适合的院校。同时,构建基于历史数据的考研分数线预测模型。将数据集分为训练集和测试集,评估模型的性能和准确性,并根据评估结果对模型进行调整和改进。
    • 数据可视化与交互:使用Pyecharts等可视化库,绘制柱状图、折线图、饼状图等,展示分析结果和模型预测的信息。设计交互式界面,用户可以通过界面进行筛选和选择,提高用户体验。

三、研究方法与技术路线

  1. 软件开发环境

    • 使用PyCharm作为开发环境。
    • MySQL作为数据库管理系统,Navicat作为数据库管理工具。
  2. 第三方库与框架

    • 使用Django、Django-simpleui、DjangoRESTframework等构建后端开发环境。
    • 使用Pandas、Requests、BeautifulSoup4等进行数据分析和处理。
    • 使用Pyecharts进行数据可视化。
    • 使用TensorFlow或PyTorch等深度学习框架构建CNN模型。
  3. 技术路线

    • 数据采集:编写两个并行爬虫,一个用于采集研究生院校的基本信息,另一个用于采集历年考研数据。通过网络请求和HTML解析的方式获取所需数据,并将数据保存到本地CSV文件或数据库中。
    • 数据处理:对采集到的数据进行清洗、补全、整合和转换等处理操作,以确保数据的质量和一致性。
    • 数据分析:利用Pandas、NumPy等数据分析工具,对采集到的数据进行统计分析。分析院校收藏Top10和院校评分Top10等数据,统计院校数量、双一流院校数量、自划线院校数量排名前十的省份,以及对专业报录比、学校报录比等进行分析。
    • 模型构建与训练:基于学校评分和收藏数据等,构建基于CNN卷积神经网络的推荐模型。使用历史数据构建和训练考研分数线预测模型。将数据集分为训练集和测试集,评估模型的性能和准确性,并根据评估结果对模型进行调整和改进。
    • 数据可视化与交互:使用Pyecharts等可视化库绘制图表,展示分析结果和模型预测的信息。设计交互式界面,提高用户体验。

四、预期成果与创新点

  1. 预期成果

    • 实现一个基于Python和CNN卷积神经网络的考研院校推荐系统。
    • 实现考研分数线的预测功能。
    • 提供数据可视化功能,通过图表形式展示分析结果和预测结果。
  2. 创新点

    • 引入CNN卷积神经网络技术,提高推荐模型的准确性和效率。
    • 综合考虑多种因素,如学校评分、收藏数据等,构建综合推荐模型,提高推荐的个性化程度。
    • 通过数据可视化技术,将分析结果以直观、易于理解的图表形式展示,提高用户体验。

五、研究计划与进度安排

  1. 第一阶段(1-2个月)

    • 完成数据采集与处理工作,确保数据的质量和一致性。
    • 进行初步的数据分析,了解数据特征和分布情况。
  2. 第二阶段(2-3个月)

    • 构建基于CNN卷积神经网络的推荐模型和考研分数线预测模型。
    • 对模型进行初步的训练和评估,根据评估结果对模型进行调整和改进。
  3. 第三阶段(1-2个月)

    • 实现数据可视化功能,将分析结果和预测结果以图表形式展示。
    • 设计交互式界面,提高用户体验。
  4. 第四阶段(1个月)

    • 进行系统测试与优化,确保系统的稳定性和可靠性。
    • 撰写论文并准备答辩,完成项目的总结与验收工作。

六、参考文献

(由于篇幅限制,未列出具体参考文献,但在实际撰写过程中应详细列出所有引用的文献。)


通过以上内容,本项目旨在开发一个基于Python和CNN卷积神经网络的考研院校推荐系统,同时实现考研分数线的预测功能,为考生提供个性化的研究生专业和院校推荐服务,帮助他们更好地选择适合自己的学术道路。

运行截图

推荐项目

上万套Java、Python、大数据、机器学习、深度学习等高级选题(源码+lw+部署文档+讲解等)

项目案例

优势

1-项目均为博主学习开发自研,适合新手入门和学习使用

2-所有源码均一手开发,不是模版!不容易跟班里人重复!

🍅✌感兴趣的可以先收藏起来,点赞关注不迷路,想学习更多项目可以查看主页,大家在毕设选题,项目代码以及论文编写等相关问题都可以给我留言咨询,希望可以帮助同学们顺利毕业!🍅✌

源码获取方式

🍅由于篇幅限制,获取完整文章或源码、代做项目的,拉到文章底部即可看到个人联系方式。🍅

点赞、收藏、关注,不迷路,下方查看👇🏻获取联系方式👇🏻

http://www.zhongyajixie.com/news/11941.html

相关文章:

  • 温州网站建设制作公司百度快速排名 搜
  • 免费cn域名注册北京网站优化服务
  • 做网站相关的英文名词零基础怎么做电商
  • 免费自助建站系统大全贵阳网站建设公司
  • 网站规划说明书范文seo关键词排名优化联系方式
  • 备案时网站关闭常用的网络推广手段有哪些
  • 设计网站公司价格百度网页链接
  • 整站建设和网站优化h5制作
  • 各大网站免费观看seo网上培训多少钱
  • 网站是广西住房和城乡建设厅网页代码
  • 中铁建设集团董事长网站seo优化免费
  • adobe做网站的百度收录情况
  • 门户网站开发需求分析关键字参数
  • 网站建设网址网站制作三只松鼠软文范例500字
  • 网站做等保三级建设点点站长工具
  • 网站设计营销比较好的知名公司有哪些
  • 那个网站做租赁好注册域名
  • 陕西网页制作seo站长博客
  • 网站关键词多长中国刚刚发生8件大事
  • 网站功能有哪些西安企业seo外包服务公司
  • 专业建设网站服务公司semen是什么意思
  • 个人网站开发的现状百度手机应用商店
  • 怎样在微信上做网站快手刷评论推广网站
  • 网站关键词怎么快速上排名给网站做seo的价格
  • 海南免费做网站今日新闻最新10条
  • 简约 网站郑州网站推广哪家专业
  • 照片墙网站源码指数函数公式
  • 自助搜优惠券网站怎么做的广州抖音seo
  • title 网站建设网络策划
  • 免费制作图片加文字网站优化外包多少钱