当前位置: 首页 > news >正文

php学什么可以做网站cba排名

php学什么可以做网站,cba排名,戴尔的网站建设目标,怎么选择手机网站建设状态更新计算过程: 计算卡尔曼增益: 根据预测的误差协方差矩阵 P k − P_k^- Pk−​ 和观测噪声协方差矩阵 R R R 计算卡尔曼增益 K k K_k Kk​: K k P k − H T ( H P k − H T R ) − 1 K_k P_k^- H^T (H P_k^- H^T R)^{-1} Kk​Pk…
状态更新计算过程:
  1. 计算卡尔曼增益
    根据预测的误差协方差矩阵 P k − P_k^- Pk 和观测噪声协方差矩阵 R R R 计算卡尔曼增益 K k K_k Kk
    K k = P k − H T ( H P k − H T + R ) − 1 K_k = P_k^- H^T (H P_k^- H^T + R)^{-1} Kk=PkHT(HPkHT+R)1

    带入预测的 P k − P_k^- Pk R R R 计算:

    P k − = [ C o v X X 0 0 0 0 0 0 C o v Y Y 0 0 0 0 0 0 C o v Z Z 0 0 0 0 0 0 C o v δ t δ t 0 0 0 0 0 0 ∗ ∗ 0 0 0 0 ∗ ∗ ] P_k^- = \begin{bmatrix} Cov_{XX} & 0 & 0 & 0 & 0 & 0 \\ 0 & Cov_{YY} & 0 & 0 & 0 & 0 \\ 0 & 0 & Cov_{ZZ} & 0 & 0 & 0 \\ 0 & 0 & 0 & Cov_{\delta t \delta t} & 0 & 0 \\ 0 & 0 & 0 & 0 & * & * \\ 0 & 0 & 0 & 0 & * & * \\ \end{bmatrix} Pk= CovXX000000CovYY000000CovZZ000000Covδtδt0000000000

    R = [ σ 1 2 0 ⋯ 0 0 σ 2 2 ⋯ 0 ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ σ n 2 ] R = \begin{bmatrix} \sigma_1^2 & 0 & \cdots & 0 \\ 0 & \sigma_2^2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_n^2 \\ \end{bmatrix} R= σ12000σ22000σn2

    假设观测矩阵 H H H 为设计矩阵 A A A

    A = [ l f 1 G 1 m f 1 G 1 n f 1 G 1 − 1 0 0 0 l f 2 G 2 m f 2 G 2 n f 2 G 2 − 1 0 0 0 l f 3 G 3 m f 3 G 3 n f 3 G 3 − 1 0 0 0 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ l f n G n m f n G n n f n G n − 1 0 0 0 l f 1 C 1 m f 1 C 1 n f 1 C 1 − 1 0 − 1 0 l f 2 C 2 m f 2 C 2 n f 2 C 2 − 1 0 − 1 0 l f 3 C 3 m f 3 C 3 n f 3 C 3 − 1 0 − 1 0 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ l f n C n m f n C n n f n C n − 1 0 − 1 0 ] A = \begin{bmatrix} l_{f_1}^{G_1} & m_{f_1}^{G_1} & n_{f_1}^{G_1} & -1 & 0 & 0 & 0 \\ l_{f_2}^{G_2} & m_{f_2}^{G_2} & n_{f_2}^{G_2} & -1 & 0 & 0 & 0 \\ l_{f_3}^{G_3} & m_{f_3}^{G_3} & n_{f_3}^{G_3} & -1 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ l_{f_n}^{G_n} & m_{f_n}^{G_n} & n_{f_n}^{G_n} & -1 & 0 & 0 & 0 \\ l_{f_1}^{C_1} & m_{f_1}^{C_1} & n_{f_1}^{C_1} & -1 & 0 & -1 & 0 \\ l_{f_2}^{C_2} & m_{f_2}^{C_2} & n_{f_2}^{C_2} & -1 & 0 & -1 & 0 \\ l_{f_3}^{C_3} & m_{f_3}^{C_3} & n_{f_3}^{C_3} & -1 & 0 & -1 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ l_{f_n}^{C_n} & m_{f_n}^{C_n} & n_{f_n}^{C_n} & -1 & 0 & -1 & 0 \end{bmatrix} A= lf1G1lf2G2lf3G3lfnGnlf1C1lf2C2lf3C3lfnCnmf1G1mf2G2mf3G3mfnGnmf1C1mf2C2mf3C3mfnCnnf1G1nf2G2nf3G3nfnGnnf1C1nf2C2nf3C3nfnCn11111111000000000000111100000000

    则卡尔曼增益 K k K_k Kk 计算为:
    K k = P k − A T ( A P k − A T + R ) − 1 K_k = P_k^- A^T (A P_k^- A^T + R)^{-1} Kk=PkAT(APkAT+R)1

    (1)计算 A P k − A T A P_k^- A^T APkAT
    A P k − A T = A [ C o v X X 0 0 0 0 0 0 C o v Y Y 0 0 0 0 0 0 C o v Z Z 0 0 0 0 0 0 C o v δ t δ t 0 0 0 0 0 0 ∗ ∗ 0 0 0 0 ∗ ∗ ] A T A P_k^- A^T = A \begin{bmatrix} Cov_{XX} & 0 & 0 & 0 & 0 & 0 \\ 0 & Cov_{YY} & 0 & 0 & 0 & 0 \\ 0 & 0 & Cov_{ZZ} & 0 & 0 & 0 \\ 0 & 0 & 0 & Cov_{\delta t \delta t} & 0 & 0 \\ 0 & 0 & 0 & 0 & * & * \\ 0 & 0 & 0 & 0 & * & * \\ \end{bmatrix} A^T APkAT=A CovXX000000CovYY000000CovZZ000000Covδtδt0000000000 AT

    (2)计算 A P k − A T + R A P_k^- A^T + R APkAT+R
    A P k − A T + R = A [ C o v X X 0 0 0 0 0 0 C o v Y Y 0 0 0 0 0 0 C o v Z Z 0 0 0 0 0 0 C o v δ t δ t 0 0 0 0 0 0 ∗ ∗ 0 0 0 0 ∗ ∗ ] A T + R A P_k^- A^T + R = A \begin{bmatrix} Cov_{XX} & 0 & 0 & 0 & 0 & 0 \\ 0 & Cov_{YY} & 0 & 0 & 0 & 0 \\ 0 & 0 & Cov_{ZZ} & 0 & 0 & 0 \\ 0 & 0 & 0 & Cov_{\delta t \delta t} & 0 & 0 \\ 0 & 0 & 0 & 0 & * & * \\ 0 & 0 & 0 & 0 & * & * \\ \end{bmatrix} A^T + R APkAT+R=A CovXX000000CovYY000000CovZZ000000Covδtδt0000000000 AT+R

    由于 A P k − A T + R A P_k^- A^T + R APkAT+R 是对角矩阵,其逆矩阵为:
    ( A P k − A T + R ) − 1 = [ ( C o v X X + σ 1 2 ) − 1 0 0 0 ( C o v Y Y + σ 2 2 ) − 1 0 0 0 ( C o v Z Z + σ 3 2 ) − 1 ] (A P_k^- A^T + R)^{-1} = \begin{bmatrix} (Cov_{XX} + \sigma_1^2)^{-1} & 0 & 0 \\ 0 & (Cov_{YY} + \sigma_2^2)^{-1} & 0 \\ 0 & 0 & (Cov_{ZZ} + \sigma_3^2)^{-1} \\ \end{bmatrix} (APkAT+R)1= (CovXX+σ12)1000(CovYY+σ22)1000(CovZZ+σ32)1

    (3)计算 K k K_k Kk
    K k = P k − A T ( A P k − A T + R ) − 1 K_k = P_k^- A^T (A P_k^- A^T + R)^{-1} Kk=PkAT(APkAT+R)1

    带入 P k − P_k^- Pk ( A P k − A T + R ) − 1 (A P_k^- A^T + R)^{-1} (APkAT+R)1
    K k = [ C o v X X 0 0 0 C o v Y Y 0 0 0 C o v Z Z 0 0 0 0 0 0 0 0 0 0 0 0 ] A T [ ( C o v X X + σ 1 2 ) − 1 0 0 0 ( C o v Y Y + σ 2 2 ) − 1 0 0 0 ( C o v Z Z + σ 3 2 ) − 1 ] K_k = \begin{bmatrix} Cov_{XX} & 0 & 0 \\ 0 & Cov_{YY} & 0 \\ 0 & 0 & Cov_{ZZ} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{bmatrix} A^T \begin{bmatrix} (Cov_{XX} + \sigma_1^2)^{-1} & 0 & 0 \\ 0 & (Cov_{YY} + \sigma_2^2)^{-1} & 0 \\ 0 & 0 & (Cov_{ZZ} + \sigma_3^2)^{-1} \\ \end{bmatrix} Kk= CovXX0000000CovYY0000000CovZZ0000 AT (CovXX+σ12)1000(CovYY+σ22)1000(CovZZ+σ32)1

    简化计算得到:
    K k = [ C o v X X ( C o v X X + σ 1 2 ) − 1 0 0 0 C o v Y Y ( C o v Y Y + σ 2 2 ) − 1 0 0 0 C o v Z Z ( C o v Z Z + σ 3 2 ) − 1 0 0 0 0 0 0 0 0 0 0 0 0 ] K_k = \begin{bmatrix} Cov_{XX} (Cov_{XX} + \sigma_1^2)^{-1} & 0 & 0 \\ 0 & Cov_{YY} (Cov_{YY} + \sigma_2^2)^{-1} & 0 \\ 0 & 0 & Cov_{ZZ} (Cov_{ZZ} + \sigma_3^2)^{-1} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{bmatrix} Kk= CovXX(CovXX+σ12)10000000CovYY(CovYY+σ22)10000000CovZZ(CovZZ+σ32)10000

    因此,卡尔曼增益 K k K_k Kk 为:
    K k = [ C o v X X C o v X X + σ 1 2 0 0 0 C o v Y Y C o v Y Y + σ 2 2 0 0 0 C o v Z Z C o v Z Z + σ 3 2 0 0 0 0 0 0 0 0 0 0 0 0 ] K_k = \begin{bmatrix} \frac{Cov_{XX}}{Cov_{XX} + \sigma_1^2} & 0 & 0 \\ 0 & \frac{Cov_{YY}}{Cov_{YY} + \sigma_2^2} & 0 \\ 0 & 0 & \frac{Cov_{ZZ}}{Cov_{ZZ} + \sigma_3^2} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{bmatrix} Kk= CovXX+σ12CovXX0000000CovYY+σ22CovYY0000000CovZZ+σ32CovZZ0000

  2. 更新状态估计
    根据观测值 z k z_k zk 和预测值 x ^ k − \hat{x}_k^- x^k 进行状态更新:
    x k = x ^ k − + K k ( z k − H x ^ k − ) x_k = \hat{x}_k^- + K_k (z_k - H \hat{x}_k^-) xk=x^k+Kk(zkHx^k)

    带入观测值 z k z_k zk 和预测值 x ^ k − \hat{x}_k^- x^k

    假设 x ^ k − \hat{x}_k^- x^k 为:
    x ^ k − = [ x ^ k , 1 − x ^ k , 2 − x ^ k , 3 − ⋮ x ^ k , 7 − ] \hat{x}_k^- = \begin{bmatrix} \hat{x}_{k,1}^- \\ \hat{x}_{k,2}^- \\ \hat{x}_{k,3}^- \\ \vdots \\ \hat{x}_{k,7}^- \end{bmatrix} x^k= x^k,1x^k,2x^k,3x^k,7

    观测值 z k z_k zk 为:
    z k = [ z k , 1 z k , 2 z k , 3 ] z_k = \begin{bmatrix} z_{k,1} \\ z_{k,2} \\ z_{k,3} \end{bmatrix} zk= zk,1zk,2zk,3

    假设观测矩阵 H H H 为设计矩阵 A A A

    A = [ l f 1 G 1 m f 1 G 1 n f 1 G 1 − 1 0 0 0 l f 2 G 2 m f 2 G 2 n f 2 G 2 − 1 0 0 0 l f 3 G 3 m f 3 G 3 n f 3 G 3 − 1 0 0 0 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ l f n G n m f n G n n f n G n − 1 0 0 0 l f 1 C 1 m f 1 C 1 n f 1 C 1 − 1 0 − 1 0 l f 2 C 2 m f 2 C 2 n f 2 C 2 − 1 0 − 1 0 l f 3 C 3 m f 3 C 3 n f 3 C 3 − 1 0 − 1 0 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ l f n C n m f n C n n f n C n − 1 0 − 1 0 ] A = \begin{bmatrix} l_{f_1}^{G_1} & m_{f_1}^{G_1} & n_{f_1}^{G_1} & -1 & 0 & 0 & 0 \\ l_{f_2}^{G_2} & m_{f_2}^{G_2} & n_{f_2}^{G_2} & -1 & 0 & 0 & 0 \\ l_{f_3}^{G_3} & m_{f_3}^{G_3} & n_{f_3}^{G_3} & -1 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ l_{f_n}^{G_n} & m_{f_n}^{G_n} & n_{f_n}^{G_n} & -1 & 0 & 0 & 0 \\ l_{f_1}^{C_1} & m_{f_1}^{C_1} & n_{f_1}^{C_1} & -1 & 0 & -1 & 0 \\ l_{f_2}^{C_2} & m_{f_2}^{C_2} & n_{f_2}^{C_2} & -1 & 0 & -1 & 0 \\ l_{f_3}^{C_3} & m_{f_3}^{C_3} & n_{f_3}^{C_3} & -1 & 0 & -1 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ l_{f_n}^{C_n} & m_{f_n}^{C_n} & n_{f_n}^{C_n} & -1 & 0 & -1 & 0 \end{bmatrix} A= lf1G1lf2G2lf3G3lfnGnlf1C1lf2C2lf3C3lfnCnmf1G1mf2G2mf3G3mfnGnmf1C1mf2C2mf3C3mfnCnnf1G1nf2G2nf3G3nfnGnnf1C1nf2C2nf3C3nfnCn11111111000000000000111100000000

    则状态更新为:

    x k = [ x ^ k , 1 − x ^ k , 2 − x ^ k , 3 − ⋮ x ^ k , 7 − ] + K k ( [ z k , 1 z k , 2 z k , 3 ] − A [ x ^ k , 1 − x ^ k , 2 − x ^ k , 3 − ⋮ x ^ k , 7 − ] ) x_k = \begin{bmatrix} \hat{x}_{k,1}^- \\ \hat{x}_{k,2}^- \\ \hat{x}_{k,3}^- \\ \vdots \\ \hat{x}_{k,7}^- \end{bmatrix}+ K_k \left( \begin{bmatrix} z_{k,1} \\ z_{k,2} \\ z_{k,3} \end{bmatrix} - A \begin{bmatrix} \hat{x}_{k,1}^- \\ \hat{x}_{k,2}^- \\ \hat{x}_{k,3}^- \\ \vdots \\ \hat{x}_{k,7}^- \end{bmatrix} \right) xk= x^k,1x^k,2x^k,3x^k,7 +Kk zk,1zk,2zk,3 A x^k,1x^k,2x^k,3x^k,7

    简化后:
    x k = [ x ^ k , 1 − x ^ k , 2 − x ^ k , 3 − ⋮ x ^ k , 7 − ] + K k [ z k , 1 − ( A x ^ k − ) 1 z k , 2 − ( A x ^ k − ) 2 z k , 3 − ( A x ^ k − ) 3 ] x_k = \begin{bmatrix} \hat{x}_{k,1}^- \\ \hat{x}_{k,2}^- \\ \hat{x}_{k,3}^- \\ \vdots \\ \hat{x}_{k,7}^- \end{bmatrix}+ K_k \begin{bmatrix} z_{k,1} - (A \hat{x}_k^-)_{1} \\ z_{k,2} - (A \hat{x}_k^-)_{2} \\ z_{k,3} - (A \hat{x}_k^-)_{3} \end{bmatrix} xk= x^k,1x^k,2x^k,3x^k,7 +Kk zk,1(Ax^k)1zk,2(Ax^k)2zk,3(Ax^k)3

    带入卡尔曼增益 K k K_k Kk 计算结果:
    K k = [ C o v X X C o v X X + σ 1 2 0 0 0 C o v Y Y C o v Y Y + σ 2 2 0 0 0 C o v Z Z C o v Z Z + σ 3 2 0 0 0 0 0 0 0 0 0 0 0 0 ] K_k = \begin{bmatrix} \frac{Cov_{XX}}{Cov_{XX} + \sigma_1^2} & 0 & 0 \\ 0 & \frac{Cov_{YY}}{Cov_{YY} + \sigma_2^2} & 0 \\ 0 & 0 & \frac{Cov_{ZZ}}{Cov_{ZZ} + \sigma_3^2} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{bmatrix} Kk= CovXX+σ12CovXX0000000CovYY+σ22CovYY0000000CovZZ+σ32CovZZ0000

    最终状态更新为:
    x k = [ x ^ k , 1 − x ^ k , 2 − x ^ k , 3 − ⋮ x ^ k , 7 − ] + [ C o v X X C o v X X + σ 1 2 0 0 0 C o v Y Y C o v Y Y + σ 2 2 0 0 0 C o v Z Z C o v Z Z + σ 3 2 0 0 0 0 0 0 0 0 0 0 0 0 ] [ z k , 1 − ( A x ^ k − ) 1 z k , 2 − ( A x ^ k − ) 2 z k , 3 − ( A x ^ k − ) 3 ] x_k = \begin{bmatrix} \hat{x}_{k,1}^- \\ \hat{x}_{k,2}^- \\ \hat{x}_{k,3}^- \\ \vdots \\ \hat{x}_{k,7}^- \end{bmatrix}+ \begin{bmatrix} \frac{Cov_{XX}}{Cov_{XX} + \sigma_1^2} & 0 & 0 \\ 0 & \frac{Cov_{YY}}{Cov_{YY} + \sigma_2^2} & 0 \\ 0 & 0 & \frac{Cov_{ZZ}}{Cov_{ZZ} + \sigma_3^2} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{bmatrix} \begin{bmatrix} z_{k,1} - (A \hat{x}_k^-)_{1} \\ z_{k,2} - (A \hat{x}_k^-)_{2} \\ z_{k,3} - (A \hat{x}_k^-)_{3} \end{bmatrix} xk= x^k,1x^k,2x^k,3x^k,7 + CovXX+σ12CovXX0000000CovYY+σ22CovYY0000000CovZZ+σ32CovZZ0000 zk,1(Ax^k)1zk,2(Ax^k)2zk,3(Ax^k)3

  3. 更新误差协方差矩阵
    更新误差协方差矩阵 P k P_k Pk

    P k = ( I − K k A ) P k − P_k = (I - K_k A) P_k^- Pk=(IKkA)Pk

    带入计算:

    假设 I I I 为单位矩阵:
    I = [ 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 ] I = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \end{bmatrix} I= 1000000010000000100000001000000010000000100000001

    卡尔曼增益 K k K_k Kk 为:
    K k = [ C o v X X C o v X X + σ 1 2 0 0 0 C o v Y Y C o v Y Y + σ 2 2 0 0 0 C o v Z Z C o v Z Z + σ 3 2 0 0 0 0 0 0 0 0 0 0 0 0 ] K_k = \begin{bmatrix} \frac{Cov_{XX}}{Cov_{XX} + \sigma_1^2} & 0 & 0 \\ 0 & \frac{Cov_{YY}}{Cov_{YY} + \sigma_2^2} & 0 \\ 0 & 0 & \frac{Cov_{ZZ}}{Cov_{ZZ} + \sigma_3^2} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{bmatrix} Kk= CovXX+σ12CovXX0000000CovYY+σ22CovYY0000000CovZZ+σ32CovZZ0000

    假设观测矩阵 H H H 为设计矩阵 A A A
    A = [ l f 1 G 1 m f 1 G 1 n f 1 G 1 − 1 0 0 0 l f 2 G 2 m f 2 G 2 n f 2 G 2 − 1 0 0 0 l f 3 G 3 m f 3 G 3 n f 3 G 3 − 1 0 0 0 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ l f n G n m f n G n n f n G n − 1 0 0 0 l f 1 C 1 m f 1 C 1 n f 1 C 1 − 1 0 − 1 0 l f 2 C 2 m f 2 C 2 n f 2 C 2 − 1 0 − 1 0 l f 3 C 3 m f 3 C 3 n f 3 C 3 − 1 0 − 1 0 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ l f n C n m f n C n n f n C n − 1 0 − 1 0 ] A = \begin{bmatrix} l_{f_1}^{G_1} & m_{f_1}^{G_1} & n_{f_1}^{G_1} & -1 & 0 & 0 & 0 \\ l_{f_2}^{G_2} & m_{f_2}^{G_2} & n_{f_2}^{G_2} & -1 & 0 & 0 & 0 \\ l_{f_3}^{G_3} & m_{f_3}^{G_3} & n_{f_3}^{G_3} & -1 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ l_{f_n}^{G_n} & m_{f_n}^{G_n} & n_{f_n}^{G_n} & -1 & 0 & 0 & 0 \\ l_{f_1}^{C_1} & m_{f_1}^{C_1} & n_{f_1}^{C_1} & -1 & 0 & -1 & 0 \\ l_{f_2}^{C_2} & m_{f_2}^{C_2} & n_{f_2}^{C_2} & -1 & 0 & -1 & 0 \\ l_{f_3}^{C_3} & m_{f_3}^{C_3} & n_{f_3}^{C_3} & -1 & 0 & -1 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ l_{f_n}^{C_n} & m_{f_n}^{C_n} & n_{f_n}^{C_n} & -1 & 0 & -1 & 0 \end{bmatrix} A= lf1G1lf2G2lf3G3lfnGnlf1C1lf2C2lf3C3lfnCnmf1G1mf2G2mf3G3mfnGnmf1C1mf2C2mf3C3mfnCnnf1G1nf2G2nf3G3nfnGnnf1C1nf2C2nf3C3nfnCn11111111000000000000111100000000

    则更新误差协方差矩阵为:
    P k = ( [ 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 ] − [ C o v X X C o v X X + σ 1 2 0 0 0 C o v Y Y C o v Y Y + σ 2 2 0 0 0 C o v Z Z C o v Z Z + σ 3 2 0 0 0 0 0 0 0 0 0 0 0 0 ] [ l f 1 G 1 m f 1 G 1 n f 1 G 1 − 1 0 0 0 l f 2 G 2 m f 2 G 2 n f 2 G 2 − 1 0 0 0 l f 3 G 3 m f 3 G 3 n f 3 G 3 − 1 0 0 0 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ l f n G n m f n G n n f n G n − 1 0 0 0 l f 1 C 1 m f 1 C 1 n f 1 C 1 − 1 0 − 1 0 l f 2 C 2 m f 2 C 2 n f 2 C 2 − 1 0 − 1 0 l f 3 C 3 m f 3 C 3 n f 3 C 3 − 1 0 − 1 0 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ l f n C n m f n C n n f n C n − 1 0 − 1 0 ] ) [ C o v X X 0 0 0 0 0 0 C o v Y Y 0 0 0 0 0 0 C o v Z Z 0 0 0 0 0 0 C o v δ t δ t 0 0 0 0 0 0 ∗ ∗ 0 0 0 0 ∗ ∗ ] P_k = \left( \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \end{bmatrix} - \begin{bmatrix} \frac{Cov_{XX}}{Cov_{XX} + \sigma_1^2} & 0 & 0 \\ 0 & \frac{Cov_{YY}}{Cov_{YY} + \sigma_2^2} & 0 \\ 0 & 0 & \frac{Cov_{ZZ}}{Cov_{ZZ} + \sigma_3^2} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{bmatrix} \begin{bmatrix} l_{f_1}^{G_1} & m_{f_1}^{G_1} & n_{f_1}^{G_1} & -1 & 0 & 0 & 0 \\ l_{f_2}^{G_2} & m_{f_2}^{G_2} & n_{f_2}^{G_2} & -1 & 0 & 0 & 0 \\ l_{f_3}^{G_3} & m_{f_3}^{G_3} & n_{f_3}^{G_3} & -1 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ l_{f_n}^{G_n} & m_{f_n}^{G_n} & n_{f_n}^{G_n} & -1 & 0 & 0 & 0 \\ l_{f_1}^{C_1} & m_{f_1}^{C_1} & n_{f_1}^{C_1} & -1 & 0 & -1 & 0 \\ l_{f_2}^{C_2} & m_{f_2}^{C_2} & n_{f_2}^{C_2} & -1 & 0 & -1 & 0 \\ l_{f_3}^{C_3} & m_{f_3}^{C_3} & n_{f_3}^{C_3} & -1 & 0 & -1 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ l_{f_n}^{C_n} & m_{f_n}^{C_n} & n_{f_n}^{C_n} & -1 & 0 & -1 & 0 \end{bmatrix} \right) \begin{bmatrix} Cov_{XX} & 0 & 0 & 0 & 0 & 0 \\ 0 & Cov_{YY} & 0 & 0 & 0 & 0 \\ 0 & 0 & Cov_{ZZ} & 0 & 0 & 0 \\ 0 & 0 & 0 & Cov_{\delta t \delta t} & 0 & 0 \\ 0 & 0 & 0 & 0 & * & * \\ 0 & 0 & 0 & 0 & * & * \\ \end{bmatrix} Pk= 1000000010000000100000001000000010000000100000001 CovXX+σ12CovXX0000000CovYY+σ22CovYY0000000CovZZ+σ32CovZZ0000 lf1G1lf2G2lf3G3lfnGnlf1C1lf2C2lf3C3lfnCnmf1G1mf2G2mf3G3mfnGnmf1C1mf2C2mf3C3mfnCnnf1G1nf2G2nf3G3nfnGnnf1C1nf2C2nf3C3nfnCn11111111000000000000111100000000 CovXX000000CovYY000000CovZZ000000Covδtδt0000000000

    进一步计算得到:进一步计算得到:
    P k = ( [ 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 ] − [ C o v X X C o v X X + σ 1 2 0 0 0 C o v Y Y C o v Y Y + σ 2 2 0 0 0 C o v Z Z C o v Z Z + σ 3 2 0 0 0 0 0 0 0 0 0 0 0 0 ] ) [ C o v X X 0 0 0 0 0 0 C o v Y Y 0 0 0 0 0 0 C o v Z Z 0 0 0 0 0 0 C o v δ t δ t 0 0 0 0 0 0 ∗ ∗ 0 0 0 0 ∗ ∗ ] P_k = \left( \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \end{bmatrix} - \begin{bmatrix} \frac{Cov_{XX}}{Cov_{XX} + \sigma_1^2} & 0 & 0 \\ 0 & \frac{Cov_{YY}}{Cov_{YY} + \sigma_2^2} & 0 \\ 0 & 0 & \frac{Cov_{ZZ}}{Cov_{ZZ} + \sigma_3^2} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{bmatrix} \right) \begin{bmatrix} Cov_{XX} & 0 & 0 & 0 & 0 & 0 \\ 0 & Cov_{YY} & 0 & 0 & 0 & 0 \\ 0 & 0 & Cov_{ZZ} & 0 & 0 & 0 \\ 0 & 0 & 0 & Cov_{\delta t \delta t} & 0 & 0 \\ 0 & 0 & 0 & 0 & * & * \\ 0 & 0 & 0 & 0 & * & * \\ \end{bmatrix} Pk= 1000000010000000100000001000000010000000100000001 CovXX+σ12CovXX0000000CovYY+σ22CovYY0000000CovZZ+σ32CovZZ0000 CovXX000000CovYY000000CovZZ000000Covδtδt0000000000

    最终得到:
    P k = [ ( 1 − C o v X X C o v X X + σ 1 2 ) C o v X X 0 0 0 0 0 0 ( 1 − C o v Y Y C o v Y Y + σ 2 2 ) C o v Y Y 0 0 0 0 0 0 ( 1 − C o v Z Z C o v Z Z + σ 3 2 ) C o v Z Z 0 0 0 0 0 0 C o v δ t δ t 0 0 0 0 0 0 ∗ ∗ 0 0 0 0 ∗ ∗ ] P_k = \begin{bmatrix} \left(1 - \frac{Cov_{XX}}{Cov_{XX} + \sigma_1^2}\right) Cov_{XX} & 0 & 0 & 0 & 0 & 0 \\ 0 & \left(1 - \frac{Cov_{YY}}{Cov_{YY} + \sigma_2^2}\right) Cov_{YY} & 0 & 0 & 0 & 0 \\ 0 & 0 & \left(1 - \frac{Cov_{ZZ}}{Cov_{ZZ} + \sigma_3^2}\right) Cov_{ZZ} & 0 & 0 & 0 \\ 0 & 0 & 0 & Cov_{\delta t \delta t} & 0 & 0 \\ 0 & 0 & 0 & 0 & * & * \\ 0 & 0 & 0 & 0 & * & * \\ \end{bmatrix} Pk= (1CovXX+σ12CovXX)CovXX000000(1CovYY+σ22CovYY)CovYY000000(1CovZZ+σ32CovZZ)CovZZ000000Covδtδt0000000000

16.2 站星双差Kalman滤波伪距差分定位流程

站星双差仅有位置状态量,所以其Kalman滤波流程更加简单。

对于时间更新步骤,基本就使用单点结果对概略位置进行填充,所以实际上已经降级为最小二乘,因为前后历元状态量在时间序列上不存在相关性。

但对于观测更新过程,观测值的方差需要考虑因星间作差引入的相关性。

对于没有做星间单差之前

V u d = [ p 1 p 2 p 3 p 4 ] R u d = [ σ 1 2 0 0 0 0 σ 2 2 0 0 0 0 σ 3 2 0 0 0 0 σ 4 2 ] V_{ud} = \begin{bmatrix} p^1 \\ p^2 \\ p^3 \\ p^4 \end{bmatrix} \quad R_{ud} = \begin{bmatrix} \sigma_1^2 & 0 & 0 & 0 \\ 0 & \sigma_2^2 & 0 & 0 \\ 0 & 0 & \sigma_3^2 & 0 \\ 0 & 0 & 0 & \sigma_4^2 \end{bmatrix} Vud= p1p2p3p4 Rud= σ120000σ220000σ320000σ42

星间单差之后

V s d = [ p 2 − p 1 p 3 − p 1 p 4 − p 1 ] R s d = [ σ 2 2 + σ 1 2 σ 2 2 + σ 1 2 σ 2 2 + σ 1 2 σ 1 2 + σ 3 2 σ 1 2 + σ 3 2 σ 1 2 + σ 3 2 σ 1 2 + σ 4 2 σ 1 2 + σ 4 2 σ 1 2 + σ 4 2 ] V_{sd} = \begin{bmatrix} p^2 - p^1 \\ p^3 - p^1 \\ p^4 - p^1 \end{bmatrix} \quad R_{sd} = \begin{bmatrix} \sigma_2^2 + \sigma_1^2 & \sigma_2^2 + \sigma_1^2 & \sigma_2^2 + \sigma_1^2 \\ \sigma_1^2 + \sigma_3^2 & \sigma_1^2 + \sigma_3^2 & \sigma_1^2 + \sigma_3^2 \\ \sigma_1^2 + \sigma_4^2 & \sigma_1^2 + \sigma_4^2 & \sigma_1^2 + \sigma_4^2 \end{bmatrix} Vsd= p2p1p3p1p4p1 Rsd= σ22+σ12σ12+σ32σ12+σ42σ22+σ12σ12+σ32σ12+σ42σ22+σ12σ12+σ32σ12+σ42

其余流程相同,不再推导。

http://www.zhongyajixie.com/news/11557.html

相关文章:

  • 怎么做网站主导航直通车关键词优化
  • 路桥做网站郴州seo外包
  • 网站建设策划书百度文库今日早间新闻
  • 国家重点项目建设部网站百度网页版进入
  • 网站设计的文案seo服务是什么
  • 成全视频免费观看在线看下载动漫东莞搜索优化十年乐云seo
  • 做网站的中文名字小红书软文案例
  • 局域网搭建的步骤14个seo小技巧
  • 哪种语言做网站好电商网站上信息资源的特点包括
  • ftp 迁移 网站头条搜索
  • 企业商务网免费seo公司
  • 阿里云建设个人网站班级优化大师下载安装
  • 做网站方法站长友情链接平台
  • 做网站花的钱和优化网站有关系吗北京seo管理
  • 创建全国文明城市我们在行动绘画东莞seo建站优化哪里好
  • 北京做网站个人seo建站是什么
  • ja.wordpress.org百度seo公司哪家好一点
  • 开锁换锁公司网站模板今日头条最新消息
  • asp网站后台无法编辑百度关键词优化软件网站
  • 湖南医院响应式网站建设企业seo值怎么提高
  • 微信网站开发详解贵阳网站建设制作
  • 做投资理财网站武汉seo排名
  • 做网站没有高清图片怎么办友情链接平台站长资源
  • 建设执业资格注册管理中心网站百度推广可以自己开户吗
  • 网站域名代办合肥百度搜索排名优化
  • 医院网站备案前置审批如何做网站网页
  • 兽装定制网站网站建设流程是什么
  • 嘉兴网站搜索排名如何进行搜索引擎的优化
  • 网站建设静态代码seo是如何做优化的
  • 怎么做交友网站杭州网站推广大全